# **ROBOTICS (20/07/2016)**

Matteo Matteucci, Gianluca Bardaro

The exam will be graded IFF the following recommendations have been taken into account:

- Write clearly so that the teacher can easily understand your answers
- Write your name, surname, and student id on each sheet you deliver for evaluation
- For each exercise/question report clearly the number and sub-number (if present)
- You are not allowed to use any programmable device (e.g., smartphone, calculator, etc.)
- You can use pen or pencil, paper will be provided, you cannot use notes or books

#### Exercise 1 (Algorithm)

Let's consider the Online SLAM problem, in particular:

- a) Provide the derivation of the recursive Bayes Filter for Online SLAM
- b) Describe the Bayes filter algorithm for Online SLAM
- c) Describe the assumption in terms of uncertainty representation, motion model and measurement model behind the EKF-SLAM algorithm
- d) Describe the EKF-SLAM algorithm for Online SLAM

### **Exercise 2 (Numerical Exercise)**

Consider a graph-based trajectory planner based on the A\* algorithm using as heuristic  $max(\Delta x, \Delta y)$ 

- a) Describe the role of the heuristics in the A\* algorithm, i.e., what it is and how it is used. Is the suggested heuristic a proper one?
- b) Apply the A\* algorithm assuming a 4 cells connectivity for the graph, i.e., the robot can move in the cells above, below, on the right, and on the left with the cost of 1
- c) Apply the A\* algorithm assuming a 8 cells connectivity for the graph, i.e., the robot can move in all the cells around with the cost of 1

| 00<br>Start | 01 | 02 | 03 | 04 | 05 | 06         |
|-------------|----|----|----|----|----|------------|
| 07          | 80 | 09 | 10 | 11 | 12 | 13         |
| 14          | 15 | 16 | 17 | 18 | 19 | 20<br>Goal |

<u>Note:</u> for the solution of the exercise provide the status of the list of OPEN states of  $A^*$  at each iteration (one per line), you can strike out at each step the state you decide to expand and move into the CLOSED list. Keep track of the g value for each state in the grid. For instance:

| 00<br>Start    | 01 | 02 | 03 | 04 | 05 | 06         |
|----------------|----|----|----|----|----|------------|
| 07<br><u>1</u> | 80 | 09 | 10 | 11 | 12 | 13         |
| 14<br>2        | 15 | 16 | 17 | 18 | 19 | 20<br>Goal |

| 1) | <del>00</del> |  |  |  |  |
|----|---------------|--|--|--|--|
| 2) | <del>07</del> |  |  |  |  |
| 3) | 14            |  |  |  |  |
| 4) |               |  |  |  |  |
|    |               |  |  |  |  |

For the solution of point a), please refer to course slides (in particular to the properties the heuristics needs to let the A\* algorithm to find the optimal solution – consistency and admissibility).

The proposed heuristics has the required properties for being a proper heuristics for the problem. It can be represented as

| 00    | 01 | 02 | 03 | 04 | 05 | 06   |
|-------|----|----|----|----|----|------|
| Start |    | 4  | 3  | 2  | 2  | 2    |
| 07    | 08 | 09 | 10 | 11 | 12 | 13   |
| 6     |    | 4  | 3  |    | 1  | 1    |
| 14    | 15 | 16 | 17 | 18 | 19 | 20   |
| 6     | 5  | 4  | 3  |    | 1  | Goal |

For the solution of point b) the open list is the following with the final solution for the g function, ties are broken selecting the last node inserted



| 00    | 01 | 02 | 03 | 04 | 05 | 06       |
|-------|----|----|----|----|----|----------|
| Start |    | 6  | 7  | 8  | 9  | 10       |
| 07    | 08 | 09 | 10 | 11 | 12 | 13       |
| 1     |    | 5  | 6  |    | 10 | 11       |
| 14    | 15 | 16 | 17 | 18 | 19 | 20       |
| 2     | 3  | 4  | 5  |    | 11 | વેન્ટ્રા |

For the solution of point c) the open list is the following with the final solution for the g function, ties are broken selecting the last node inserted

| 1) | <del>00</del>                     |       |
|----|-----------------------------------|-------|
| 2) | <del>07</del>                     |       |
| 3) | 14, <del>15</del>                 |       |
| 4) | 14, <del>16</del> , 09            | (Tie) |
| 5) | 14, 09, <del>17</del> , 10        | (Tie) |
| 6) | 14, 09, <del>10</del>             | (Tie) |
| 7) | 14, 09, 02, 03, <del>04</del>     |       |
| 8) | 14, 09, 02, 03, 05, <del>12</del> |       |

9) 14, 09, 02, 03, 05, 06, 13, 19, <del>20</del>

| 00    | 01 | 02 | 03 | 04 | 05 | 06                  |
|-------|----|----|----|----|----|---------------------|
| Start |    | 4  | 4  | 5  | 6  | 7                   |
| 07    | 80 | 09 | 10 | 11 | 12 | 13                  |
| 1     |    | 3  | 4  |    | 6  | 7                   |
| 14    | 15 | 16 | 17 | 18 | 19 | 20                  |
| 2     | 2  | 3  | 4  |    | 7  | G <mark>7</mark> al |

## **Exercise 3 (Theory/Algorithm)**

Let's consider the problem of obstacle avoidance, a.k.a., local path planning, and the algorithms to implement it. Provide a description of

- a) What is the aim of local path planning
- b) The Vector Field Histogram approach (VFH) and its improvement Vector Field Histogram+ (VFH+)
- c) The Dynamic Window Approach (DWA)
- d) All these three algorithm use a navigation function, i.e., a function evaluating the value/cost of possible actions. Discuss briefly how it could be possible to set up the parameters involved in these functions

## Exercise 4 (ROS)

Describe the differences between messages, services, and actions in ROS.

#### Exercise 5 (Other)

What are direct and inverse kinematics of a robot? Provide an example of their use.