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Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

So far we have considered only «static» datasets
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Sequence Modeling

Different ways to deal with «dynamic» data:

Memoryless models:
A Autoregressive models
A Feedforward neural networks

Models with memory:

A Linear dynamical systems
A Hidden Markov models
A Recurrent Neural Networks
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Memoryless Models for Sequences

Autoregressive models <\ ) x ;
A Predict the next iInput from [ M 1 M { J X X
previous ones using «delay taps» W
NA \_/

time

Feed forward neural networks ® ® o

A Generalize autoregressive model & & % % X . X
using non linear hidden layers

time
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DynamicalSystems (Models with Memor

Stochastic systems ...

Generative models with a hidden state which cannot be observed directly

AThe hidden state has some dynamics possibly | [ Y, ]

0 1 X Y;
affected by noise and produces the output @ 5 @
ATo compute the output need to infer hidden statEY—Cﬂ G o
Alnput are treated as driving inputs = S | . X — O

T T T

{

In linear dynamical systems this becomes: —

N Ar - \_u__/
AState continuous with Gaussian uncertainty X, X, X
. . X
ATransformatlons are assumed to be linear

AState can be estimated usingalmanfiltering

time
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DynamicalSystems (Models with Memor

Stochastic systems ...

Generative models with a hidden state which cannot be observed directly

AThe hidden state has some dynamics possibly | [ Y, ]
0 1 X Y;
affected by noise and produces the output @ 5 @
ATo compute the output need to infer hidden state—— SR
Alnput are treated as driving inputs % : % X %
I L L
In hidden Markov models this becomes: ~——~ —+~ —

AState assumed to be discrete, state transitions
are stochastic (transition matrix)

AOutput IS a stochastic function of hidden states
AState can be estimated vi¥iterbi algorithm time’
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Recurrent Neural networks Deterministic

systems ...

Memory via recurrent connections:

ADistributed hidden state allows
to store a information efficiently

ANon-linear dynamics allows
complex hidden state updates

AWI th enough neurons
can compute anything that can be
computed by a comp:

(Computation Beyond the Turing Limit
HavaT. Siegelmann, 1995)
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Recurrent Neural networks

Memory via recurrent connections:

ADistributed hidden state allows
to store a information efficiently

ANon-linear dynamics allows
complex hidden state updates
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Backpropagation Through Time




Backpropagation Through Time
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Backpropagation Through Time

A Perform network unroll for U steps
A Initializecity replicas to be the same

A Compute gradients and update replicas
with the average of their gradients
o) T O , , . P 1O
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How much should we go backin time?

©
_ | AN Q a7 )
Sometime output might be related to 0‘\"*,
. . v<\‘//
some input happened quite long beforex \oyy,
AN A O
W

\

Janewalkedrintothe-room:John walked dn .tob.
It was|late in theldayaJaneisaid hi-to <??7?7> X

Q(ax)

However backpropagation through
time was not able to train recurrent
neural networks significantly, , ACAR DD

back in time ... .
Was due to not being able to

backprop through many layers ...

g
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How much can we go backin time?

To better understand why it was not working consider a simplified case:

Q Qv o()'t'oo. 6o Qo0

Backpropagation over an entire sequenc¥is computed as

_O’ ‘ - 2 TOT‘*’/{\T\Q 1o 10 s Ot )

—n

10 TcuT 1"Q 1Q

If 77 pthis
convergesto O ...

With Sigmoids and Tanh we
have vanishing gradients
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Which Activation Function?

Sigmoid activation function Tanh activation function
p e A ADDG
AW - dw R A -
p ADDB® ) @ D®
Q@ Qo p Aw Q@ p AW
) ) ; p . AdBm
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Dealing with Vanishing Gradient

10

Force all gradients to be either 0O or 1

A YQUD | A@D
nQ( ) p

-10 10

Build Recurrent Neural Networks using small modules that are designed
to remember values for a long time.

It only accumulates
the input ...
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Long ShortTerm Memories (LSTM)

Hochreiter& Schmidhuber(1997) solved the problem of vanishing
gradient designing a memory cell using logistic and linear units with
multiplicative interactions:

netcj S, =S +gy'“1 ye
] ] in hyuut
Alnformation gets into the cell —~ " n —7
whenevwrited i d &t ® | ,3@ ‘ ®9@ ’ w\
AThe information stays in the cell We, y" @ Yo @ -
so |l ongepmsgate D . 7|,I\r\“et'w o 711\r\"°t=un

Alnformation is read from the cell
. , . Figure 1: Architecture of memory cell ¢; (the box) and its gate unils in;, out;. The self-recurrent
b y t ur n. rea@ (g a t e t_ connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of

¢ ®constant error carrousel” CEC. The gate units open and close access to CEC. See text and
appendiz A.1 for details.

Can backpropagate
through this since the

loop has fixed weight.
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RNN vs. LSTM
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LSTM Images from: https://colah.github.io/posts/201508-Understanding STMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

ﬁTQ @ (Ef; jrt =0 (Wi-lhe—1, 2] + bi)
4 N R 4 ™ C; = tanh(We-|hi—1, 2] + be)
LSTM A _'_i A P g A i fo =0 (Ws-[he—1,2] + by)
] 1 : rclgbtalnh g SR I Cy = fi % Co_1 + iy % C,
o =0 (W, [hi—1,2¢] + bo)

@ @ @ ht = 0y * tanh (Ct)

I Neural Network Pointwise Vector Concatenate Copy

Layer Operation Transfer

&—{>-0

LSTM Images from: https://colah.github.io/posts/201508-Understanding STMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

Input gate @TQ

[T:t_g(wi-[ht_l,mf] + b;) J

~ N éﬁ :tﬂnh(WC'[ht—lrirt] + E?C')

®
—>:o ® \> —»>
LSTM : & Ganh> ft:U(W ‘[hrt—l :Iit] + b)
A le A i tionly

| Cy = fix Croy +ig x Cy
L 1 J
J )_> D — 4 >k )_>
| | or =0 (Wo [hi—1,2¢] + bo)
&) ) &) hy = o4 * tanh (C)

| iv =0 (Wi-[hi—1, 2] + by)
h Cy = tanh(We-[hy—1, 2] + bo)

A
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LSTM Images from: https://colah.github.io/posts/201508-Understanding STMs/



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

Forget gate @TQ @ (6% iv = o (Wi-lhe_1, 2] + by)
P S N ™ Cy = tanh(We-[hy—1,24] + be)
> —R——® > -
LSTM | & o= oWy b a4 b))
S rflg:‘;‘h g Cy = fi * Ci—1 + iy xe

\J PagN= 4N J

| | or =0 (W, [hi—1,2¢] + bo)
@ @ @ ht = 0y * tanh (Ct)

fi fo=0Wy-lhi—r, 2] + by)

T

LSTM Images from: https://colah.github.io/posts/201508-Understanding STMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

Memory gate GTD ®) %9 i = o (Wi Ther 2] + )
- ™\ N\ ™ Cy = tanh(We-[hi—1,2¢] + be)
LSTM A "‘Cf r:g' & > A =0 (Wylherm] + by
! JF’ [(;7] [(;7:] tanh] (0] : »\\7 J_} Ciy = fr *Ci_q + 1 * C
I | op =0 (W, [hi—1,x¢] + by)
@ @ @ hy = o = tanh (Cy)

LSTM Images from: https://colah.qgithub.io/posts/201508-Understanding STMs/




