
ROBOT NAVIGATION
ROBOTICS

OUR IMPLEMENTATION

ROBOT

/…/velocity

JOYPAD

joy_node

/joy joy_cmd

/odom

/cmd_joy

pose

OUR IMPLEMENTATION

ROBOT

/…/velocity

JOYPAD

joy_node

/joy joy_cmd

/odom

mux/cmd_joy

/cmd_auto

pose

control

/pose

/goal

sequencer

/mode

/plan

planner

OUR IMPLEMENTATION

ROBOT

/…/velocity

JOYPAD

joy_node

/joy joy_cmd

/odom

mux/cmd_joy

/cmd_auto

pose

control

/pose

/goal

sequencer

/mode

/plan

planner

Time consuming
Lack of modularity
Difficult to adapt to new
robots
Low quality implementation
Lack of functionalities

SOLUTION?

Exploit the greatest quality of ROS
already available and implemented components

SOLUTION?

Exploit the greatest quality of ROS
already available and implemented components

ROS navigation (stack)
http://wiki.ros.org/navigation

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Central element of navigation and
the definition of the base class

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Robot localization using various
methods

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Different algorithms to
implement local autonomous

movement

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs
Global planner used to generate

the trajectory on a large scale

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Various recovery behavior for
stuck robots or critical situations

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Tools for 2D and 3D map
representation

NAVIGATION
move_base

nav_core

amcl

robot_pose_ekf

base_local_planner

carrot_planner

dwa_local_planner

navfn

global_planner

move_slow_and_clear

rotate_recovery

clear_costmap_recovery

costmap_2d

map_server

voxel_grid

fake_localization

move_base_msgs

Extra utilities for testing and
communication

GENERAL ARCHITECTURE

MOVE_BASE

MOVE_BASE

Single node and core element of ROS navigation.
Implements all the main planning and control functionalities

based on plugins for dynamic configuration.
Easy to extend via ROS pluginlib.

Based on the nav_core class.

NAV_CORE

NAV_CORE

Goal as a single point
via topic or actions

Velocity command
via topic

NAV_CORE

Plugins implement
functionalities

Exchangeable at
execution time

NAV_CORE

NAV_CORE

Information about
the world provided by
the map server and

the sensors

COST MAP
Takes in sensor data and builds a 2D or 3D occupancy grid of the data

COST MAP

Each cell can have one of 255 different cost values
Inflates costs

COST MAP

ROS Navigation is based on two different costmaps:
Global: used for long-term plans over the entire environment
Local: used for local planning and obstacle avoidance

These costmaps have specific and common configurations

MAP_SERVER

MAP_SERVER

Tool provided by ROS navigation to publish and save maps.
Offers the map both via topic and via service.

Can save dynamically generated maps.

Combined with costmap_2d:
Manages multi-layered 2D maps.

Inflate obstacle according to sensor information.

MAP_SERVER
The map is composed by:

YAML file: describes the map meta-data
Image file: encodes the occupancy data

File
YAML+

File PGM o PNG

MAP_SERVER

image: maze.png

resolution: 0.05

origin: [0.0, 0.0, 0.0]

negate: 0

occupied_thresh: 0.65

free_thresh: 0.196

maze.yaml Path to the image file containing
the occupancy data

Resolution of the map, meters /
pixel

The 2-D pose of the lower-left pixel in the map, as (x,
y, yaw)

The white/black free/occupied semantics should be
reversed

Pixels with occupancy probability greater than this
threshold are considered completely occupied

 Pixels with occupancy probability less than this
threshold are considered completely free

AMCL

AMCL

Probabilistic localization system based on a 2D map.
Provides the estimated position using future dated tf.

Requires a laser scan and provides better result when using odometry.

AMCL (TRANSFORMATION FRAMES)

amcl publishes this The robot provides this

AMCL (TRANSFORMATION FRAMES)

Transforms incoming laser scans to the odometry frame
→ It requires a path from /base_scan to /odom

Estimates the position of the robot in the global frame
→ Transformation between /map and /base_link

Publishes the transformation between the global frame and the odometry frame
→ Transformation between /odom and /map

→ Correct the odometry drift

AMCL

min_particles: 500
max_particles: 2000

update_min_d: 0.25
update_min_a: 0.2

resample_interval: 1

initial_pose_x: 2.0
initial_pose_y: 2.0
initial_pose_a: 0.0

odom_model_type: "diff"

odom_frame_id: "odom"
base_frame_id: "base_footprint"
global_frame_id: "map"

Acml parametersMinimum/Maximum allowed
number of particles.

Translational and rotational movement required
before performing a filter update

Number of filter updates required before
resampling

Initial pose mean (x, y, yaw), used to initialize filter
with Gaussian distribution.

Model to use, either "diff", "omni"

Frame to use for odometry, robot_base and for the
localization system

WHAT’S MISSING?

WHAT’S MISSING?

Everything platform specific need to be implemented by hand:
Low-level robot interaction
Sensor drivers
Sensor measurements processing
Odometry estimation
High-level task planning

Most of these are already available in ROS as existing packages (i.e., drivers,
robot_pose_ekf, …)

ROS NAV REQUIREMENTS

ROS NAV REQUIREMENTS

ROS Navigation has a specific architecture and needs some specific
condition to work:
◼ Sensor source to localize and avoid obstacle, as sensor_msgs/LaserScan or

sensor_msgs/PointCloud
◼ A source of odometry, as nav_msgs/Odometry
◼ Conversion from geometry_msgs/Twist to motor control
◼ A well formed tf tree (sensors position, robot position and map)

ROS NAV REQUIREMENTS

The ROS Navigation is quite general and adaptable, but it has a few
hardware requirements:
◼ Works better with differential drive or holonomic robots
◼ Requires a planar laser for scanning and localization
◼ Best results with square or circular robots

ROSBAG

Is a set of tools for recording from and playing back to ROS topics
This is the current list of supported commands:
record: Record a bag file with the contents of specified topics.
info: Summarize the contents of a bag file.
play : Play back the contents of one or more bag files.
check: Determine whether a bag is playable in the current system, or if it can be
migrated.
fix: Repair the messages in a bag file so that it can be played in the current system.
filter: convert a bag file using Python expressions.
compress: compress one or more bag files.
decompress: decompress one or more bag files.
reindex: reindex one or more broken bag files

ROSBAG COMMAND

Record a bag:
rosbag record (-a | <topic name>)

Play a bag
rosbag play --clock <name_of_the_bag>

Records all the
topics

Records only
specific topics

Use a simulated
time

NAVIGATION MAIN ELEMENTS

MAP

PLANNERS

SENSORS

LOCALIZATION

NAVIGATION MAIN ELEMENTS

MAP

PLANNERS

SENSORS

LOCALIZATION

???
?

GMAPPING

GMAPPING

ROS wrapper for openslam gmapping
Actually a SLAM algortithm

Can be used for real time map creation and localization
Based on lasers and odometry

REQUIREMENTS

◼ Odometry
◼ Horizontally-mounted, fixed, laser range-finder
◼ Full tf tree with:
◼ Base to laser transformation
◼ Base to odometry transformation

IMPORTANT PARAMETERS

base_frame (string, default: "base_link") the frame attached to the mobile base
map_frame (string, default: "map") the frame attached to the map
odom_frame (string, default: "odom") the frame attached to the odometry system

Also, topics to remap
scan (sensor_msgs/LaserScan) laser scans to create the map from
map (nav_msgs/OccupancyGrid) get the map data from this topic

HOW TO USE IT

1. Drive your robot around
1. Explore all the area you want to map
2. Try to collect as much data as possible
3. Try to make loops and give the algorithm references

2. Save everything in a bag
3. Run the bag
4. Start gmapping and let it crunch the data
5. Save the generated map

You can skip this and run the
gmapping node in real time

BAG VS REAL TIME

Faster
Can use data already collected
Can do different trials
Tune parameters

Early stop if something goes wrong
Restart in case of problems
Can see directly the results
Assure full coverage

Using a bag Processing in real time

SOME EXAMPLES

Let’s see it in practice!

ROBOT SIMULATORS
ROBOTICS

STAGE
-download from drive the folder called “stage”

-cd to the stage folder you downloaded

-to start the simulation simply use the command:

$ stage maze.world

if we want to control the robot we need to start it as a ROS node:

$ rosrun stage_ros stageros maze.world

STAGE
-to control the robot we can use any node
publishing /cmd_vel:

$ roslaunch turtlebot3_teleop
turtlebot3_teleop_key.launch

but before we need to export:
export TURTLEBOT3_MODEL="burger"

GAZEBO
$ export TURTLEBOT3_MODEL="burger"

then launch turtlebot

$ roslaunch turtlebot3_gazebo
turtlebot3_world.launch

GAZEBO
Now we want to control the robot, so we will
launch the teleop node:

$ roslaunch turtlebot3_teleop
turtlebot3_teleop_key.launch

GMAPPING
Record a bag and than create a map

to record a bag we will use turtlebot3:

$ rosbag record -O turtlebot_bag -a

Now move the robot in the turtlebot world to
get some data

GMAPPING
before starting gmapping we can take a look at
the bag (remember to start roscore):

but first we set ros to use simulated time:

$ rosparam set use_sim_time true

then:

$ rosbag play --clock turtlebot_bag.bag

to visualize the data we will open rviz:

$ rviz

GMAPPING
if we try to add the laser data we will get the
error:
“For frame [base_scan]: Frame [base_scan]
does not exist”

this because we don’t have a transformation
between the position of the laser scanner and
the centre of the robot.
We then have to add manually the
transformation, run:

$ rosrun tf static_transform_publisher 0 0 0 0 0
0 1 base_footprint base_scan 100

now we see the laser in rviz

GMAPPING
Now we can finally start gmapping; stop the bag and close rviz.

make sure the static transform is still published

then start gmapping:

$ rosrun gmapping slam_gmapping scan:=/scan _base_frame:=base_footprint

we have to specify some parameters that are not at the default value like the scan topic and the
base frame

last start again the bag file

$ rosbag play --clock turtlebot_bag.bag

wait the bag to end

GMAPPING
To create the map, after the bag has finished playing run the command:

$ rosrun map_server map_saver -f map

to create the map file (both picture and yml)

GMAPPING
To run gmapping in real time:

start turtlebot:

$ export TURTLEBOT3_MODEL="burger"

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

start the static tf publisher

$ rosrun tf static_transform_publisher 0 0 0 0 0 0 1 base_footprint base_scan 100

start gmapping

$ rosrun gmapping slam_gmapping scan:=/scan _base_frame:=base_footprint

GMAPPING
As previously to control the robot use the teleop node:

$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

We can visualize at runtime the map being created using rviz:

$ rviz

and adding the map topic

when the map is completed you can save it using the previous command:

rosrun map_server map_saver -f map

