

# ROBOTICS (17/07/2017)

Matteo Matteucci, Gianluca Bardaro

The exam will be graded IFF the following recommendations have been taken into account:

- Write clearly so that the teacher can easily understand your answers
- Write your name, surname, and student id on each sheet you deliver for evaluation
- For each exercise/question report clearly the number and sub-number (if present)
- You are not allowed to use any programmable device (e.g., smartphone, calculator, etc.)
- You can use pen or pencil, paper will be provided, you cannot use notes or books

## Exercise 1 (Theory/Numerical Exercise) [2+1+2+2 points]

Consider a graph-based trajectory planner based on the A\* algorithm using as heuristic function the Manhattan distance  $MD = \text{abs}(\Delta x) + \text{abs}(\Delta y)$  (ignoring obstacles)

- a) Describe the role of the heuristics in the A\* algorithm, i.e., what it is and how it is used, and discuss if and why the suggested heuristic is a proper one?
- b) Provide a map of the environment reporting, for each cell the value of the corresponding heuristics
- c) Apply the A\* algorithm assuming a 4 cells connectivity for the graph, i.e., the robot can move in the cells above, below, on the right, and on the left with the cost of 1
- d) Apply the A\* algorithm assuming a 8 cells connectivity for the graph, i.e., the robot can move in all the cells around with the cost of 1

|       |    |    |    |    |    |      |
|-------|----|----|----|----|----|------|
| 00    | 01 | 02 | 03 | 04 | 05 | 06   |
| Start |    |    |    |    |    |      |
| 07    | 08 | 09 | 10 | 11 | 12 | 13   |
| 14    | 15 | 16 | 17 | 18 | 19 | 20   |
| 21    | 22 | 23 | 24 | 25 | 26 | 27   |
|       |    |    |    |    |    | Goal |

Note: for the solution of the exercise provide the status of the list of OPEN states of A\* at each iteration (one per line), and the value of the g function for each state. You can strike out at each step the state you decide to expand and move into the CLOSED list. Keep track of the g value for each state in the grid. For instance:

|       |    |    |    |    |    |      |
|-------|----|----|----|----|----|------|
| 00    | 01 | 02 | 03 | 04 | 05 | 06   |
| Start |    |    |    |    |    |      |
| 07    | 08 | 09 | 10 | 11 | 12 | 13   |
| 1     |    |    |    |    |    |      |
| 14    | 15 | 16 | 17 | 18 | 19 | 20   |
| 2     |    |    |    |    |    |      |
| 21    | 22 | 23 | 24 | 25 | 26 | 27   |
|       |    |    |    |    |    | Goal |

- 1) 00(0)
- 2) 07(1)
- 3) 14(2)
- 4) ...

### **Exercise 2 (Theory/Algorithm) [2+1+1+2]**

Let's consider the problem of obstacle avoidance, a.k.a., local path planning, and the algorithms to implement it. Provide a description of

- a) the aim of local path planning and what should be its frequency with respect to global path planning (explain the reason for that!)
- b) The functioning of the Vector Field Histogram approach (VFH) for obstacle avoidance, and its improvement Vector Field Histogram+ (VFH+)
- c) The Dynamic Window Approach (DWA)
- d) All these 3 algorithms use a navigation function, i.e., a function evaluating the value/cost of possible actions. Describe such navigation function and the parameters involved in it. Discuss briefly how it could be possible to set up such parameters in practice.

### **Exercise 3 (Theory) [3 + 3 points]**

In the figures below you can appreciate the same vehicle but with two different kinematics. For each picture of the two picture describe: the **type of kinematic** of the vehicle (we have seen both during classes!), their **direct kinematic** equations (in terms of the control variables), the **advantages/disadvantages** of each.



### **Exercise 4 (ROS and Gazebo) [1 + 3 points]**

In ROS you have **topics**, **services** and **actions**, (a) what are they used for, (b) what are the characteristics of each of them in terms of usage, blocking/asynchronous behavior?

### **Exercise 5 (Other) [2 + 2 points]**

Describe the Beam Sensor Model in terms of (a) its components and the rationale behind each of them, (b) its use in a particle filter used for Monte Carlo localization (to answer properly this point you need to first briefly describe particle filtering and Monte Carlo localization).