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Recall Machine Learning Paradigms

Immagine you have a certain experience E, i.e., a dataset, and let’s name it

• Supervised Learnig: given the desired outputs                           learn to 

produce the correct output given a new set of input

• Unsupervised learning: exploit regularities in     to build a representation

to be used for reasoning or prediction

• Reinforcement learning: producing actions                             which affect

the environment, and receiving rewards                         learn to act in order 

to maximize rewards in the long term

This course focuses mainly on Supervised and Unsupervised Learning …

𝐷 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁

𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑁

𝐷

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁
𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁 Haven’t seen 

much of it, is it?
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Neural Autoencoder

Network trained to output the input (i.e., to learn the identity function) 

• Limited number of units in hidden layers (compressed representation)

• Constrain the representation to be sparse (sparse representation) 
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Word Embedding Motivation

Natural language processing systems treat words as discrete atomic symbols

• 'cat' is encoded as Id537

• 'dog' is encoded as Id143

• …

Items in a 
dictionary …

A document becomes 
a Bag of Words

Sparse and high 
dimensional -> Curse 

of Dimensionality!
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Encoding Text is a Serious Thing

Performance of real-world applications (e.g., chatbot, document classifiers, information 

retrieval systems) depends on input encoding and several have been proposed:

Local representations

• N-grams

• Bag-of-words

• 1-of-N coding

Continuous representations

• Latent Semantic Analysis

• Latent Dirichlet Allocation

• Distributed Representations

Determine 𝑃 𝑠 = 𝑤1, … , 𝑤𝑘 in some domain of interest

𝑃 𝑠𝑘 =  

𝑖

𝑘

𝑃 𝑤𝑖| 𝑤1, … , 𝑤𝑖−1

In traditional n-gram language models “the probability of a word 
depends only on the context of n−1 previous words” 

 𝑃 𝑠𝑘 =  

𝑖

𝑘

𝑃 𝑤𝑖| 𝑤𝑖−𝑛+1 , … , 𝑤𝑖−1

Typical ML-smoothing learning process (e.g., Katz 1987):

• compute  𝑃 𝑤𝑖| 𝑤𝑖−𝑛+1 , … , 𝑤𝑖−1 =
#𝑤𝑖−𝑛+1 ,…,𝑤𝑖−1 ,𝑤𝑖

#𝑤𝑖−𝑛+1 ,…,𝑤𝑖−1

• smooth to avoid zero probabilities

Language Model
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N-gram Language Model: Curse of Dimensionality

Let’s assume you train a 10-gram LM on a corpus of 100.000 unique words 

• The model lives in a 10D hypercube where each dimension has 100.000 slots 

• Model training ↔ assigning a probability to each of the 100.00010 slots

• Probability mass vanishes → more data is needed to fill the huge space

• The more data, the more unique words! → Is not going to work …

In practice:

• Corpuses can have 106 unique words 

• Contexts are typically limited to size 2 (trigram model),

e.g., famous Katz (1987) smoothed trigram model 

• With short context length a lot of information is not captured 
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N-gram Language Model: Word Similarity Ignorance

Let assume we observe the following similar sentences

• Obama speaks to the media in Illinois 

• The President addresses the press in Chicago

With classic one-hot vector space representations

• speaks = [0 0 1 0 … 0 0 0 0]

• addresses = [0 0 0 0 … 0 0 1 0]

• obama = [0 0 0 0 … 0 1 0 0]

• president = [0 0 0 1 … 0 0 0 0]

• illinois = [1 0 0 0 … 0 0 0 0]

• chicago = [0 1 0 0 … 0 0 0 0]

In each case, word pairs share no similarity, and we need word similarity to generalize

speaks ꓕ addresses

obama ꓕ president

illinois ꓕ chicago
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Embedding 

Any technique mapping a word (or phrase) 

from it's original high‐dimensional input space 

(the body of all words) to a lower‐dimensional 

numerical vector space ‐ so one embeds the 

word in a different space

Closer points are 
closer in meaning and 
they form clusters …
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Word Embedding: Distributed Representation

Each unique word 𝑤 in a vocabulary V (typically 𝑉 > 106) is mapped to a point in a 

real continuous m-dimensional space (typically 100 < 𝑚 < 500)

Fighting the curse of dimensionality with: 

• Compression (dimensionality reduction)

• Smoothing (discrete to continuous)

• Densification (sparse to dense) 

𝑤 ∈ 𝑉
𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝐶

ℜ𝑚

Similar words should end 
up  to be close to each 

other in the feature space 
…

obama = [0 0 ... 0 1 0 ... 0 0]

«one-hot» encoding

𝑤1 𝑤𝑉obama

obama = [0.12 ... -0.25]

𝑓1 𝑓𝑚

feature vector
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Neural Net Language Model (Bengio et al. 2003)

Projection layer 
contains the word 
vectors in 𝐶|𝑉|,𝑚
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Neural Net Language Model (Bengio et al. 2003)

Projection layer 
contains the word 
vectors in 𝐶|𝑉|,𝑚

An example with a 
two words context ...
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Neural Net Language Model (Bengio et al. 2003)

Softmax is used to output a multinomial distribution

 𝑃 𝑤𝑖 = 𝑤𝑡| 𝑤𝑡−𝑛+1 , … , 𝑤𝑡−1 =
𝑒𝑦𝑤𝑖

 
𝑖′
|𝑉|

𝑒𝑦𝑤𝑖′

• 𝑦 = 𝑏 + 𝑈 ⋅ tanh 𝑑 + 𝐻 ⋅ 𝑥
• 𝑥 is the concatenation 𝐶 𝑤 of the context weight vectors
• 𝑑 and 𝑏 are biases (respectively ℎ and |𝑉| elements)
• 𝑈 is the |𝑉| × ℎ matrix with hidden-to-output weights
• H is the ℎ × 𝑛 − 1 ⋅ 𝑚 projection-to-hidden 

weights matrix

Training by stochastic gradient 
descent has complexity

𝑛 × 𝑚 + 𝑛 × 𝑚 × ℎ + 𝒉 × |𝑽|
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Neural Net Language Model (Bengio et al. 2003)

Tested on Brown (1.2M words, V≅ 16K, 
200K test set) and AP News (14M 
words, V≅ 150K reduced to 18K, 1M 
test set)

• Brown: h=100, n=5, m=30 
AP News: h=60, n=6, m=100

• 3 week training using 40 cores
• 24% (Brown) and 8% (AP News) 

relative improvement wrt traditional 
smoothed n-gram in terms of test set 
perplexity

Due to complexity, NNLM can’t be 
applied to large data sets and it shows 
poor performance on rare words 

Bengio et al. (2003) thought their 
main contribution was LM accuracy 

and they let the word vectors as 
future work … 

Mikolov et al. (2013), 
instead, focused on the 

word vectors 
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Google’s word2vec (Mikolov et al. 2013a)

Idea: achieve better performance allowing a simpler (shallower) model to be trained on 

much larger amounts of data

• No hidden layer (leads to 1000X speed up)

• Projection layer is shared (not just the weight matrix)

• Context contain words both from history and future

«You shall know a word by 
the company it keeps»
John R. Firth, 1957:11.
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Google word2vec Flavors

Skip-gram architecture                    Continuous Bag-of-Words architecture
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Word2vec’s Continuous Bag-of-Words (CBOW)
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Word2vec’s Continuous Bag-of-Words (CBOW)

For each <context, target> 
pair only the context 
words are updated.

If  𝑃 𝑤𝑖 = 𝑤𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is 
overestimated some portion of 
𝐶′ 𝑤𝑖 is subtracted from the 
contex word vectors in 𝐶|𝑉|,𝑚

If  𝑃 𝑤𝑖 = 𝑤𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is 
underestimated some portion of 
𝐶′ 𝑤𝑖 is added from the contex 

word vectors in 𝐶|𝑉|,𝑚
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Word2vec facts

Word2vec shows significant improvements w.r.t. the NNML

• Complexity is 𝑛 × 𝑚 + 𝑚 × 𝑙𝑜𝑔|𝑉| (Mikolov et al. 2013a)

• On Google news 6B words training corpus, with |𝑉| ∼ 106

• CBOW with m=1000 took 2 days to train on 140 cores

• Skip-gram with m=1000 took 2.5 days on 125 cores

• NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m=100 only! 

• word2vec training speed ≅ 100K-5M words/s

• Best NNLM: 12.3% overall accuracy vs. Word2vec (with Skip-gram): 53.3%



19

Regularities in word2vec Embedding Space

Constant country-capital 
difference vector.

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText
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Regularities in word2vec Embedding Space

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Constant female-male 
difference vector.

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText
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Regularities in word2vec Embedding Space

Vector operations are supported make «intuitive sense»:

• 𝑤𝑘𝑖𝑛𝑔 − 𝑤𝑚𝑎𝑛 + 𝑤𝑤𝑜𝑚𝑎𝑛 ≅ 𝑤𝑞𝑢𝑒𝑒𝑛

• 𝑤𝑝𝑎𝑟𝑖𝑠 − 𝑤𝑓𝑟𝑎𝑛𝑐𝑒 + 𝑤𝑖𝑡𝑎𝑙𝑦 ≅ 𝑤𝑟𝑜𝑚𝑒

• 𝑤𝑤𝑖𝑛𝑑𝑜𝑤𝑠 − 𝑤𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 + 𝑤𝑔𝑜𝑜𝑔𝑙𝑒 ≅ 𝑤𝑎𝑛𝑑𝑟𝑜𝑖𝑑

• 𝑤𝑒𝑖𝑛𝑠𝑡𝑒𝑖𝑛 − 𝑤𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡 + 𝑤𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ≅ 𝑤𝑝𝑖𝑐𝑎𝑠𝑠𝑜

• 𝑤ℎ𝑖𝑠 − 𝑤ℎ𝑒 + 𝑤𝑠ℎ𝑒 ≅ 𝑤ℎ𝑒𝑟

• 𝑤𝑐𝑢 − 𝑤𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑤𝑔𝑜𝑙𝑑 ≅ 𝑤𝑎𝑢

• ...

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

«You shall know a word by 
the company it keeps»
John R. Firth, 1957:11.

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText
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Applications of word2vec in Information Retrieval

Example query: “restaurants in mountain view that are not very good”

Forming the phrases: “restaurants in (mountain view) that are (not very good)”

Adding the vectors: “restaurants + in + (mountain view) + that + are + (not very good)”

(Very simple and efficient, but will not work well for long sentences or documents)
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Applications of word2vec in Document Classification/Similarity

Word embeddings allow to 
capture the «semantics» of 

the document ...

With BoW 𝐷1and 𝐷2are 
equally similar to 𝐷0.
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Applications of word2vec in Sentiment Analysis

No need for classifiers, just use cosine distances …

Remind, is all about the 
contex  ...

«You shall know a word by 
the company it keeps»
John R. Firth, 1957:11.
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

GloVe makes explicit what word2vec does implicitly

• Encodes meaning as vector offsets in an embedding space

• Meaning is encoded by ratios of co-occurrece probabilities

Trained by weighted least squares 

Refer to Pennington et al. 
paper for details on this 

loss function ...
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

GloVe makes explicit what word2vec does implicitly

• Encodes meaning as vector offsets in an embedding space

• Meaning is encoded by ratios of co-occurrece probabilities

Trained by weighted least squares 
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Nearest Neighbours with GloVe

What are the closest words to the target word frog:

1.Frog

2.Frogs

3.Toad

4.Litoria

5.Leptodactylidae

6.Rana

7.Lizard

8.Eleutherodactylus

3. litoria 4. leptodactylidae

5. rana 7. eleutherodactylus



28

Recall Machine Learning Paradigms

Immagine you have a certain experience E, i.e., a dataset, and let’s name it

• Supervised Learnig: given the desired outputs                           learn to 

produce the correct output given a new set of input

• Unsupervised learning: exploit regularities in     to build a representation

to be used for reasoning or prediction

• Reinforcement learning: producing actions                             which affect

the environment, and receiving rewards                         learn to act in order 

to maximize rewards in the long term

This course focuses mainly on Supervised and Unsupervised Learning …

𝐷 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁

𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑁

𝐷

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁
𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁
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Credits

These slides have been inspired by

• “Introduction to word embeddings” by Antoine Tixier, November 2015

• “Introduction to word embeddings word‐vectors (Word2Vec/GloVe) Tutorial” by 

Andreas Holzinger, June 2016

• “Learning Representations of Text using Neural Networks” by Tomas Mikolov, 

Ilya Sutskever, Kai Chen, Greg Corrado, Jeff Dean, Quoc Le, Thomas 

Strohmann, NIPS Deep Learning Workshop 2013

For an in depth description of GloVe check

• “GloVe: Global Vectors for Word Representation», Jeffrey Pennington, Richard 

Socher, Christopher D. Manning. 


