g,
\\\\\\\\\\ III/,I//,,
S 7/ Z
$ Z
) E
- =
W AT
4
N3

Machine Learning

- Statistical Machine Learning -
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Reminder on Course Inspiration

Lectures are inspired by the book “An Introduction to Statistical Learning”

* Same authors of ESL, but ISL is easier! BRI

Danieia S ___SpringerSeries in Statistics
Trevor Hastie ; ) IR

° Practical perspective with labs and Rober Tisian
exercises using R language I An Introduction erome Friedman
- : to Statistical The Elements of
° Available online as pdf (as ESL) Learning Statistical Learning

www.statlearning.com

Slides from the teacher (except for clustering) are taken from these
books, while practicals have been rewritten from scratch ... in python!
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What is Statistical Learning?

Suppose we observe Y; and X; = (X4,

* Assume a relationship exists between
Y and at least one of the observed X's

* Assume we can model this as
Vi = f(Xy) + ¢

*  f:unknown function systematic
* & zero mean random error

v Xpp)fori=1,..,N
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The term Statistical Learning refers to using the data to “learn” f
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Example: Income vs. Education Seniority

Function [ might also
(nvolve multiple
variables ...
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Why do we estimate f ?

X ﬁ Model ﬁ Y/G

Prediction: Produce a good estimate for f to make accurate predictions
for the response, Y/G, based on a new value of X.

Inference: Investigate the type of relationship between Y/G and the X's to
control/influence Y/G.

*  Which particular predictors actually affect the response?

° |s the relationship positive or negative?

° Is the relationship a simple linear one or is it more complicated etc.?
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Examples for Prediction & Inference

Direct Mail Prediction
* Predicting how much money an individual will donate based on observations
from 90,000 people on which we have recorded 400 different characteristics.

°*  Don't care too much about each individual characteristic.
* Just want to know: For a given individual should | send out a mailing?

Medium House Price
*  Which factors have the biggest effect on the response

*  How big the effect is
* Want to know: how much impact does a river view have on the house value

matteo.matteucci@polimi.it
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How Do We Estimate f 7

010

We have observed a set of training data

{(Xl' Yl)r (XZ' YZ); =) (XNJ YN)}
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Use statistical method/model to estimate f
so that for any (X;,Y;)

Y; = f (X))
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Based on the model f, statistical methods/models are usually divided in
* Parametric Methods/Models
* Non-parametric Methods/Models
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Parametric Methods (Part 1)

Parametric methods make an assumption about the model underlining f
* Reduce the problem of estimating f to estimating a set of parameters
° They involve a two-step model-based approach

, , We will see more
STEP 1: Make some assumption about the funct flexible/powerful models

up with a model (e.g., a linear model) than linear ones ...

f(X))=p0,+B X+ B,Xi, +-+ X4

. : . Ordinary Least Sqares are
STEP 2: Use the training data to fit the model|, N N ——

unknown Laram eters methods exists too.

Bo B B o By
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Example: A Linear Regression Estimate

amguu'l

f=b,+b," Education+ b,” Seniority

Even if the standard deviation is low we will still get a bad answer it we
use the wrong model (high bias).
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Non-parametric Methods

Sometimes are referred as “sample-based” or “instance-based” methods,
they do not make explicit assumptions about the functional form of f, and

exploit the training data “directly”

Advantages:
* They accurately fit a wider range of possible shapes of f

* They do not require a “training” phase

Disadvantages:
* A very large number of observations required to obtain an accurate estimate

° Higher computational cost at “testing” time
* They accurately fit a wider range of possible shapes of f
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Example: A Thin-Plate Spline Estimate

TRy

Smooth thin-plate spline fit

Non-parametric regression methods are more flexible thus they can
potentially provide more accurate estimates
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Prediction Accuracy vs Model Interpretability

Why not just use a more flexible method If it is more realistic?

Reason 1. A simple method, e.g., linear regression, produces a model
which is much easier to interpret (the Inference part is better).

* E.g.,inalinear model, [5 is the average increase in Y for a one unit increase in
X; holding all other variables constant.

Reason 2: Even it interested in prediction, it is often possible to get more
accurate predictions with a simple, instead of a complicated, model.
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Example: A Poor Estimate

Thin-plate spline fit with zero
training error

Non-parametric regression methods can also be too flexible and produce
poor estimates for f (high variance)

POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 13



Flexibility vs Model Interpretability
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Bagging, Boosting

Support Vector Machines

But more flexible |
means lower errors ?!7 High

Flexibility

FIGURE 2.7. A representation of the tradeoff between flexibility and inter-

pretability, using different statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.
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Reducible vs Irreducible Error

The error our estimate will have has two components
Vi =f(X) +¢

° Reducible error due to the choice of [ (model complexity)

« M) | Voo

[ will come back to this
soon ... several times! R11 s

polynomial degrees

- 1

2 -1 1] 1 2

* Irreducible error due to the presence of ¢, in the training set
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Irreducible error ... because noise matters!
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I'his means we'll have errors due to
noise even witn the right model!!!
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Reducible vs Irreducible Error (Part 2)

The error our estimate will have has two components
Vi =f(X) +¢

* Reducible error due to the choice of f (model complexity)
* Irredaucible error due to the presence of € in the training set

Let assume f and X fixed for the time being Can you derive this?
Y = f(X)
E(Y -Y)? = E[f(X)+e— f(X)]
= [f(X)— f(X)]?+ Var(e)
N ——— N—

Reducible Irreducible
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Reducible vs Irreducible Error (Part 3)

S E[(Y -Y)*]=
- = E[(f (X)+&- f(X))]=
= =E[f(X)2+&2+ f(X)P=2-¢-f(X)=2-¢- f(X)=2-F(X)- f(X)]=
g | = £ (X)2+E[¢?]+ f(X)2+2-E[¢]- f (X)-2-E[¢]- f(X)-2-f(X)-f(X)=
° = f(X)2+E[e2]+ f(X)2=2- f(X)- f(X)=
N =(F(X)2+ f(X)2=2-f(X)- f(X))+E[¢%]=
S _ =(f(X)~ f(X))* +E[¢"]-0=
? . . = (f(X) - f(X))*+Var(e)
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Quality of Fit

Suppose we have a regression problem
° A common accuracy measure is mean squared error (MSE)

13 A
MSE = > (Vi —¥.)°
i=1

*  Where y; is the prediction for the observation in our training data.

Training is designed to make MSE small on training data, but ...

*  What we really care about is how well the method works on new data.
We call this new data “Test Data”.

° There is no guarantee that the method with the smallest Iraining MSE
will have the smallest Jest MSE
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Training vs. Test Mean Squared Error

The more flexible a method is, the lower its training MSE will be, i.e., it will
"fit" or explain the training data very well.

* Side Note: More Flexible methods (such as splines) can generate a wider range of
possible shapes to estimate [ as compared to less flexible and more restrictive
methods (such as linear regression). The less flexible the method, the easier to
interpret the model. Thus, there is a trade-off between flexibility and model
interpretability.

However, the test MSE may in fact be higher for a more flexible method
than for a simple approach like linear regression

L7/} POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 20




Example 1
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curve ), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.
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Example 2

L3
-
E —
=
Ll
o
o
L L3
© - ® ~ ]
> :
® o
@ T '
s
=+ — w
=
N o
I I I I I I © I I I I
n 20 40 /Eﬂ- a0 100 2 5 \m 20
Black: Truth RED: Test MES
Orange: Linear Estimate Grey: Training MSE
P Blue: smoothing spline e Dashed: Minimum possible test MSE
| Green: smoothing spline (irreducible error)
m wd F Eﬂr el o [ o
the data.

/) POLITECNICO MILANO 1863 matteo.matteucci@polimi.it 22



Example 3
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Imewr In this setting, linear regression provides
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a very poor fit to the data.
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Bias/ Variance Tradeoff

lest vs. Training MSE's illustrates a very important tradeoff that governs
the choice of statistical learning methods

* Bias refers to the error that is introduced by modeling a real life problem
by a much simpler problem

* E.g. linear regression assumes that there is a linear relationship between Y and X.
In real life, some bias will be present

*  The more flexible/complex a method is the less bias it will have

* Variance refers to how much your estimate for f would change by
it you had a different training data set
*  Generally, the more flexible a method is the more variance it has.
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New Notation (from ESL)
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Bias-Variance in Regression (Part 1)

Let's consider Expected Squared Prediction Error (over any possible data)

N

E{MSE} = E{;z } zE{r -3)}

Let apply an "augmentation trick” to the expectation
E{, )} = (.~ s+ f-0))
= E{(t,= £)' 1+ E{(fi =) |+ 2E{(f =2 )0, - 1)}
= E{e*}+ E{(/ — 1) | + Sl frpmmifimdotontrlieiodont] |

*  Being f deterministic we have E{fr}=7* , E{t)=f , and E{f*}=f,
* Noise is independence E{yz}=Ely,(f +¢)} = E{nf+re} =E{p.f}+0
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Bias-Variance in Regression (Part 2)

From the previous we get something already know
E(t,~y) | = E{e}+ E{(f-2)')

Lets check the second expected value

E{(j: —y,.]z} = E{(j: —E\y,}+ E{y}, _J”f)z}

Because [ is deterministic and E{E{z}} = E{z) E(f,- 3"} = bias® + Var{y;}
Elvfii=FEW0)  ERERN =ER)

ElEL Y =Bl E[fED)) = £ED) E{(t,~ )’} = Var{noise} + bias® + Var{y, }

S,
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The Trade-off

For any given, X=x, the expected test MSE for a new Y will be

Irreducible Error Model Variance

"

~—_ N ]
El(t. = v. )\ = Vardnoisel + bias® + Var{v
{( ; \.]’r) } (17 {HDISE} I{?S\ HF’{}IJ

Expected Prediction Error Model Bias

.e., as a method/model gets more complex
* Bias will decrease
* Variance will increase
* Expected Prediction Error may go up or down!
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Test MSE, Bias and Variance
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest

test MSFE.
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Can we actually compute those?

For a Linear Model|

Err(zo) = B[(Y — f1)?|X = z]
7 + [f(w0) ~Bf (@) + lIn(ao)|?0’

% Z Err(x;) = o2 + % Z[ f(z;) — E f(mi)]ﬁ

For the KNN regression fit
Err(zo) = B[(Y — f)?X = 0]

2
o el
=1
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What about Classification?

For a classification problem we can use the error rate i.e.

Error Rate=>_I(y, = ¥,)/n
=1

* Where I(y, # V) is an indicator function, which will give 1if the condition
s correct, otherwise it gives a 0.

* Error rate represents the fraction of incorrect classifications, or misclassifications

The Bayes Classifier minimizes the Average Test Error Rate
max; P(Y = J| X =X,)

The Bayes error rate is the lowest possible Error Rate achievable knowing
the “true” distribution of the data: 1 — E (maXPr(Y — j|X))

J
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Bayes Classifier

/ " momom
Bayes Decision |11 0 B G Bayes Error
Boundary ~ friiitigiiiiiiiiini]  Rate=0.1304

FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation wunill be assigned to the orange class, and the blue

background grid indicates the region in which a test observation will be assigned
to the blue class.
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K-Nearest Neighbors (KNN)

The k Nearest Neighbors method is a non parametric model often used
to estimate the Bayes Classifier

* For any given X we find the k closest neighbors to X in the training data, and
examine their corresponding Y

T the majority of the Y's are orange we predict orange otherwise guess blue.

Some notes about such a simple classifier ...

*  The smaller the k, the more flexible the method will be

KNN has “zero” training time, some cost at runtime to find the k closest
neighbors reduced by indexing

KNN has problems in high dimensional spaces, it needs approximate methods

matteo.matteucci@polimi.it 33



KNN Example with k = 3

O
O O

O

O

FIGURE 2.14. The KNN approach, using K = 3, 1s tllustrated in a simple
situation with siz blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label 1s desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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Simulated Data: K = 10

R "= s om s oEom ] . m s g Em E EE =N N m EoEEomoEoE

g 00 Bayes Error
s g Rate = 0.1304

KNN Error OniiiiiiIiiionigririiiiiiiiiiiiiin
Rate = 0.1363

FIGURE 2.15. The black curve indicates the KNN decision boundary on the

data from Figure 2.13, using K = 10. The Bayes decision boundary 1s shown as
a purple dashed line. The KNN and Bayes decision boundaries are very simailar.
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K=1and K =100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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Training vs. Test Error Rates
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Fligure 2.13, as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.
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A Fundamental Picture

Training errors will decline while test errors will decline at first (as
reductions in bias dominate) but will then start to increase again (as
increases in variance dominate).

High Bias Low Bias
Low Variance High Variance

Test Sam

Predicticn Error

Overfitting bolls

down to this!!!

Low High
Model Complexity
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A More Fundamental Picture

Closest fit in population
Realization |'

Truth / R MODEL
¢ ‘ SPACE
Model hias,f\
Estimation Bias ____ | Shrunken fit
Estimation -
Vanance

RESTRICTED
MODEL SPACE
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Question Time!

What is Statistical Learning?
Why do we estimate f7? X ﬁ

Model

How do we estimate f?
What does the bias-variance trade-off state?
What about classification?

Some important taxonomies ... you should by heart!

* Prediction vs. Inference

° Parametric vs. Non Parametric models
* Regression vs. Classification problems
* Supervised vs. Unsupervised learning
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