









### **Robot Motion Control**

Matteo Matteucci – matteo.matteucci@polimi.it





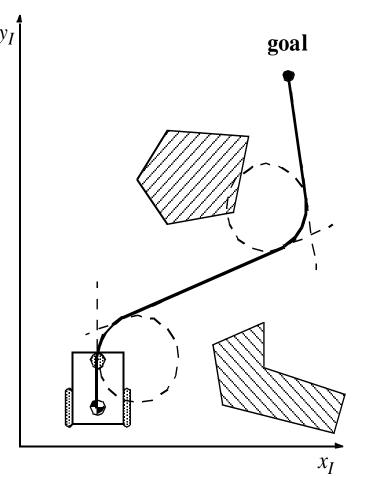
### **Open loop control**

#### A mobile robot is meant to move from one place to another

- Pre-compute a smooth trajectory based on motion segments (e.g., line and circle segments) from start to goal
- Execute the planned trajectory along the way till the goal

#### Disadvantages:

- Not an easy task to pre-compute a feasible trajectory
- Limitations and constraints of the robots velocities and accelerations
- Does not handle dynamical changes in the environment
- Resulting trajectories are usually not smooth





### Feedback control (diff drive example)

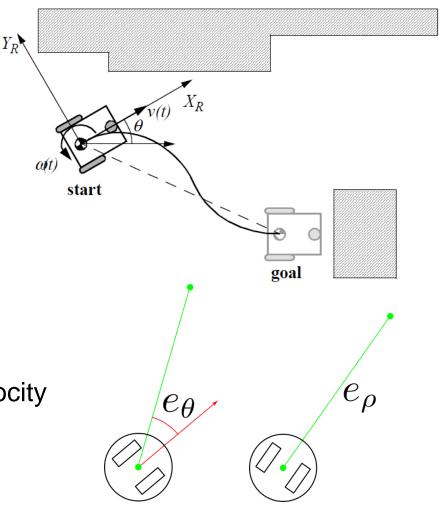
With feedback control the trajectory is recomputed and adapted online

We can design a simple control schema for path following:

- First we close a speed control loop on the wheels
- Then divide the problem in:
  - Control of the orientation
  - Control of the distance

Control orientation acting on angular velocity

Control distance acting on linear velocity





### Feedback control (diff drive example)

With feedback control the trajectory is recomputed and adapted online

We can design a simple control schema for path following:

- First we close a speed control loop on the wheels
- Then divide the problem in:
  - Control of the orientation
  - Control of the distance

Control orientation acting on angular velocity

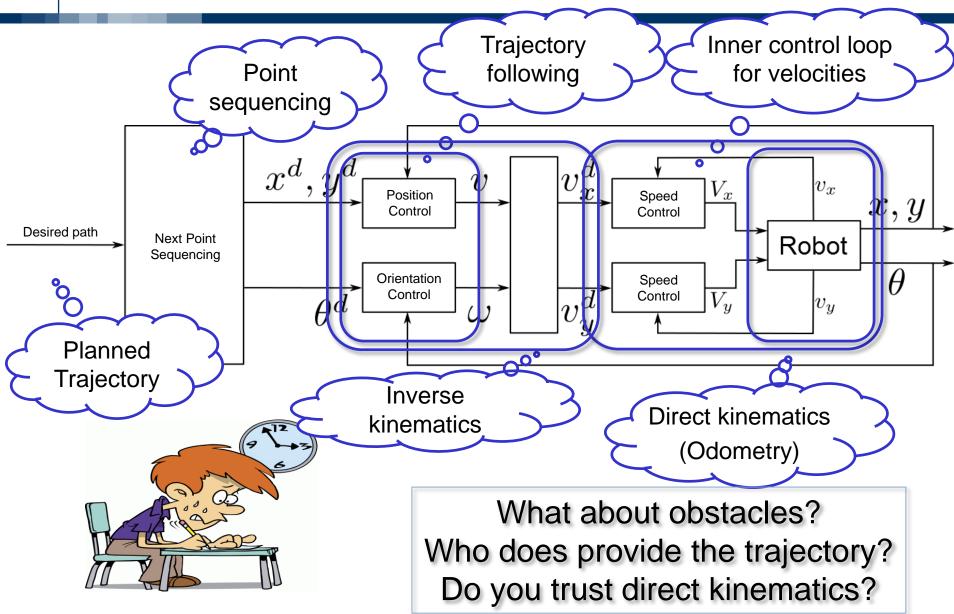
Control distance acting on linear velocity

A simple logic handles the next point



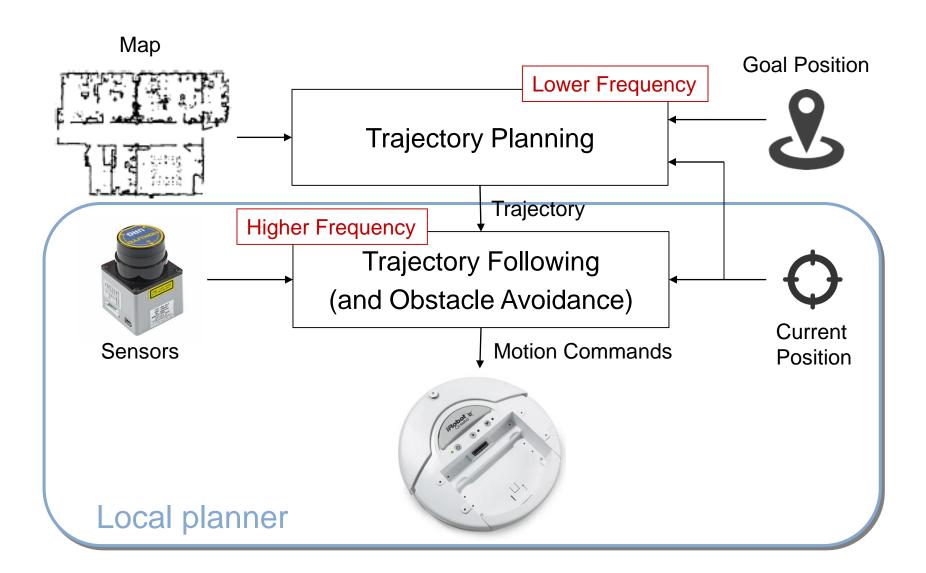


### Feedback control (diff drive example)





## **A Two Layered Approach**





### **Obstacle Avoidance (Local Path Planning)**

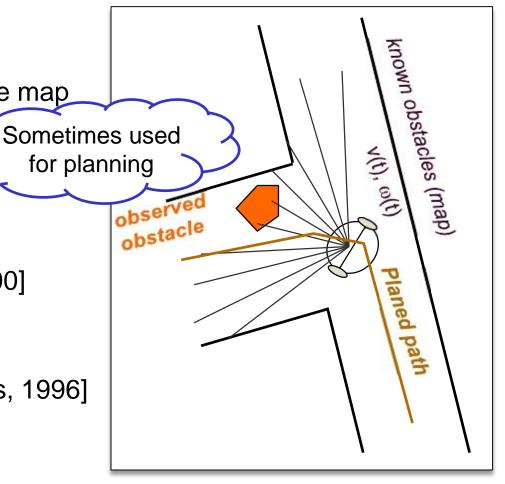
#### Obstacle avoidance should:

- Follow the planned path
- Avoid unexpected obstacle,
   i.e., those that were not in the map

Several proposed methods in the

- Potential field methods on [Borenstein, 1989]
- Vector field histogram
   [Borenstein, 1991, 1998, 2000]
- Nearness diagram
   [Minguez & Montano, 2000]
- Curvature-Velocity [Simmons, 1996]
- Dynamic Window Approach [Fox, Burgard, Thrun, 1997]

• ...





### The Simplest One ...

"Bugs" have little if any knowledge ...

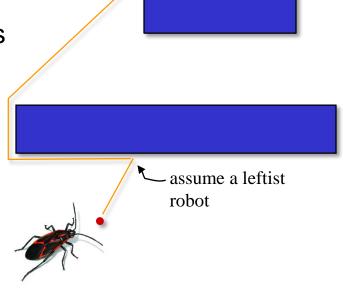
- known direction to the goal
- only local sensing (walls/obstacles + encoders)

... and their world is reasonable!

- finite obstacles in any finite range
- a line intersects an obstacle finite times

Switch between two basic behaviors

- 1. head toward goal
- follow obstacles until you can head toward the goal again

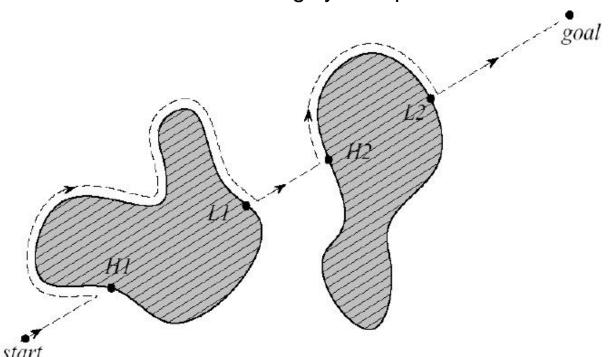


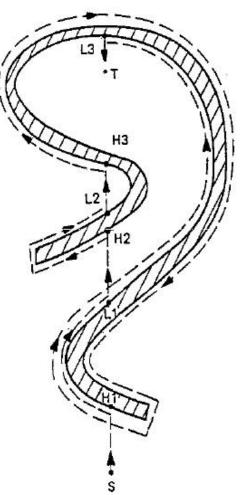


### **Bugs and Features ...**

Each obstacle is fully circled before it is left at the point closest to the goals

- Advantages
  - No global map required
  - Completeness guaranteed
- Disadvantages
  - Solution are often highly suboptimal







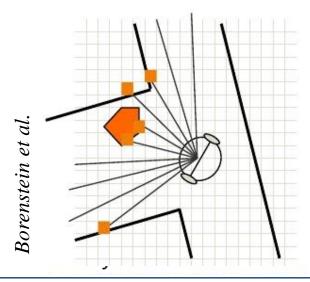
## Vector Field Histograms (VHF) [Borenstein et al. 1991]

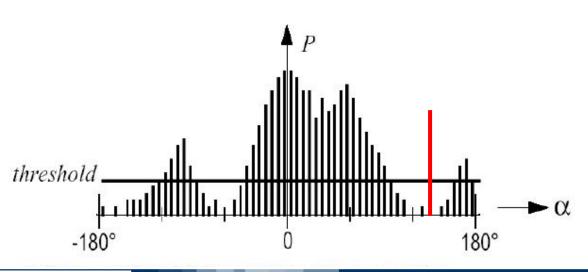
Use a local map of the environment and evaluate the angle to drive towards

- Environment represented in a grid (2 DOF) with
- The steering direction is computed in two steps:
  - all openings for the robot to pass are found
  - the one with lowest cost function G is selected

 $G = a \cdot \text{target\_direction} + b \cdot \text{wheel\_orientation} + c \cdot \text{previous\_direction}$ 

target\_direction = alignment of the robot path with the goal wheel\_orientation = difference between the new direction and the currrent wheel orientation previous\_direction = difference between the previously selected direction and the new direction



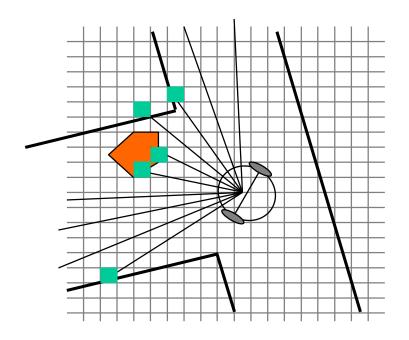


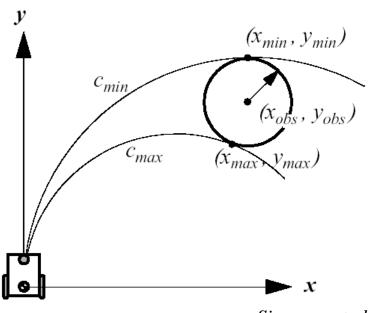


### Curvature Velocity Methods (CVM) [Simmons et al. 1996]

CVMs add physical constraints from the robot and the environment on (v, w)

- Assumption that robot is traveling on arcs (c= w / v) with acceleration constraints
- Obstacles are transformed in velocity space
- An objective function to select the optimal speed





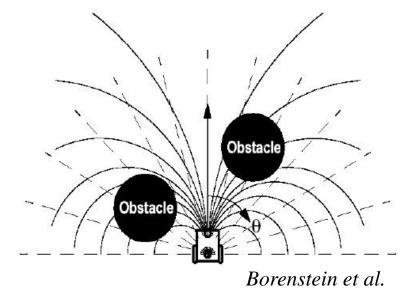
Simmons et al.



## Vector Field Histogram+ (VFH+) [Borenstein et al. 1998]

#### VHF+ accounts also in a very simplified way for vehicle kinematics

- robot moving on arcs or straight lines
- obstacles blocking a given direction also blocks all the trajectories (arcs) going through this direction like in an Ackerman vehicle
- obstacles are enlarged so that all kinematically blocked trajectories are properly taken into account



#### However VHF+ as VHF suffers

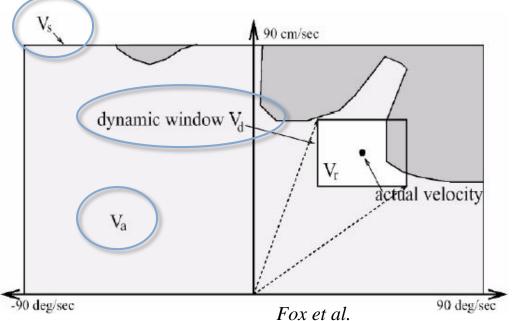
- Limitation if narrow areas (e.g. doors) have to be passed
- Local minima might not be avoided
- Reaching of the goal can not be guaranteed
- Dynamics of the robot not really considered



## Dynamic Window Approach (DWA) [Fox et al. 1997]

The kinematics of the robot are considered via local search in velocity space:

- Consider only <u>circular trajectories</u> determined by pairs  $V_s = (v, \omega)$  of translational and rotational speeds
- A pair  $V_a = (v, \omega)$  is considered <u>admissible</u>, if the robot is able to stop before it reaches the closest obstacle on the corresponding curvature.
- A <u>dynamic window</u> restricts the reachable velocities  $V_d$  to those that can be reached within a short time given limited robot accelerations



$$V_d = \begin{cases} v \in [v - a_{tr} \cdot t, v + a_{tr} \cdot t] \\ \omega \in [\omega - a_{rot} \cdot t, \omega + a_{rot} \cdot t] \end{cases}$$

**DWA Search Space** 

$$V_r = V_s \cap V_a \cap V_d$$



### How to choose $(v,\omega)$ ?

Steering commands are chosen maximizing a heuristic navigation function:

- Minimize the travel time by "driving fast in the right direction"
- Planning restricted to V<sub>r</sub> space [Fox, Burgard, Thrun '97]

$$G(v,\omega) = \sigma(\alpha \cdot heading(v,\omega) + \beta \cdot dist(v,\omega) + \gamma \cdot velocity(v,\omega))$$

Alignment with target direction

Distance to closest obstacle intersecting with curvature

Forward velocity of the robot

Global approach [Brock & Khatib 99] in <x,y>-space uses

Forward robot velocity

Follows global path

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \Delta nf + \delta goal$$

Cost to reach the goal

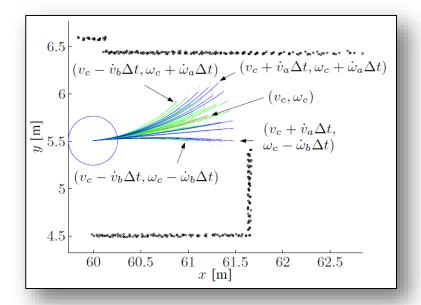
Goal nearness



## **DWA Algorithm (as implemented in ROS movebase)**

The basic idea of the Dynamic Window Approach (DWA) algorithm follows ...

- 1. Discretely sample robot control space
- For each sampled velocity, perform forward simulation from current state to predict what would happen if applied for some (short) time.
- 3. Evaluate (score) each trajectory resulting from the forward simulation
- 4. Discard illegal trajectories, i.e., those that collide with obstacles, and pick the highest-scoring trajectory



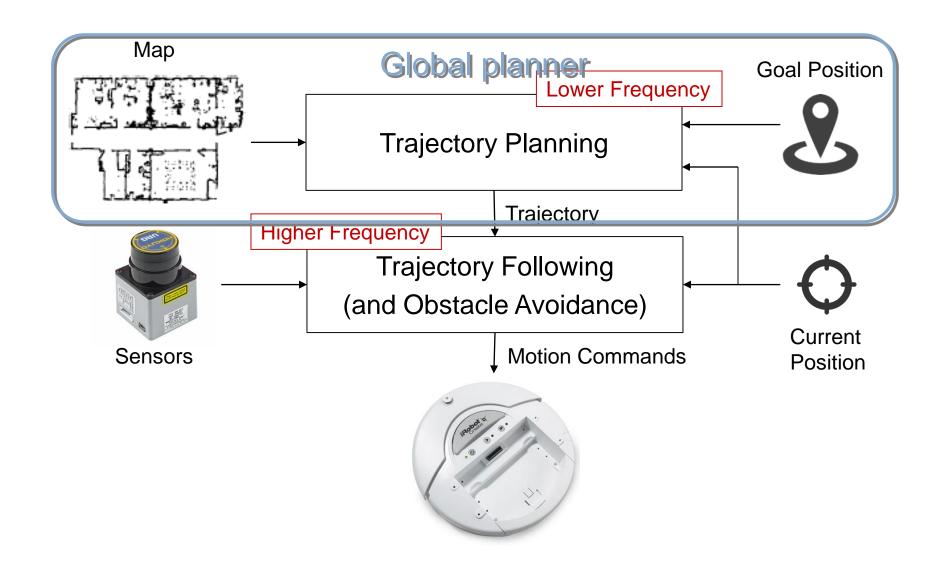
What about non circular kinematics?

Clothoid: 
$$S(x) = \int_0^x \sin(t^2) dt$$
,  $C(x) = \int_0^x \cos(t^2) dt$ .





## **A Two Layered Approach**

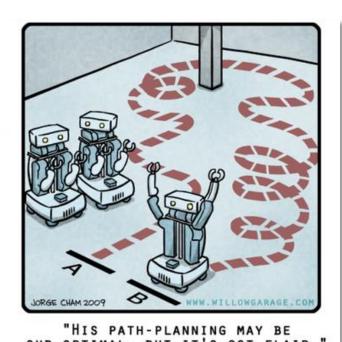




### **Robot Motion Planning**

"...eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

J.-C. Latombe (1991)



#### **Robot Motion Planning Goals**

- Collision-free trajectories
- Robot should reach the goal location as fast as possible

#### Information available

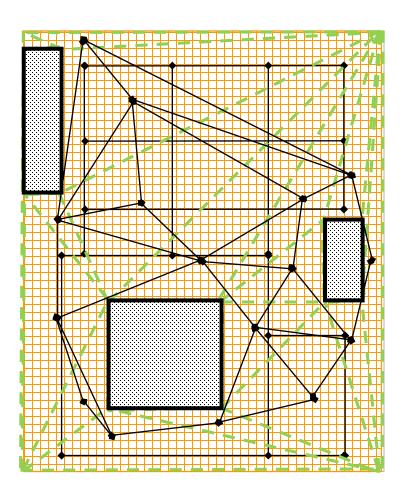
- Map with obstacles
- Robot shape and kinematics



### Planning on grid maps

#### Different possible maps representations exist for path planning

- Paths (e.g., probabilistic road maps)
- Free space (e.g., Voronoi diagrams)
- Obstacles (e.g., geometric obstacles)
- Composite (e.g., grid maps)



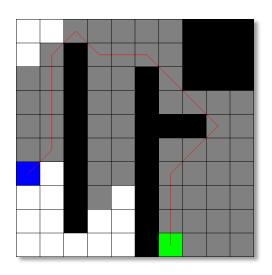


#### What a Planner?

### Search Based Planning Algorithms

- A\*
- ARA\*
- ANA\*
- AD\*
- D\*
- ..

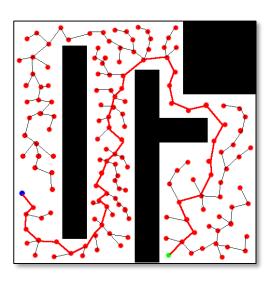
Search
Based
Planning
Library



### Random Sampling

- PRMs
- RRT
- T-RRT
- SBL
- ...

Open
Motion
Planning
Library



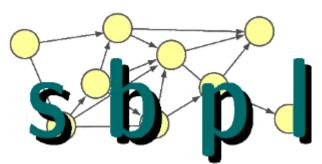


#### **Pros and Cons**

|                          | PROS                                                                                                                                                           | CONS                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Search Based<br>Planning | <ul> <li>Finds the optimal solution</li> <li>Possible to assign costs</li> <li>Use of Heuristics</li> <li>Can state if a solution exists (complete)</li> </ul> | High computational cost                                                                                                 |
| Random Sampling Planning | <ul> <li>Fast in finding a feasible solution</li> </ul>                                                                                                        | <ul> <li>Hard to assign costs</li> <li>Only probably complete<br/>(cannot be used to test<br/>for existance)</li> </ul> |

### Lets have a look at Search Based Methods (SBPL) because of

- Their simplicity (at least in description)
- The generality of approaches
- Their theoretical guarantees (if connectivity assumptions hold)





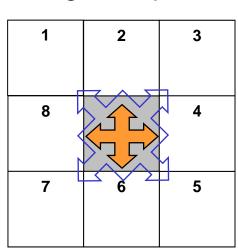
### Planning on grid maps

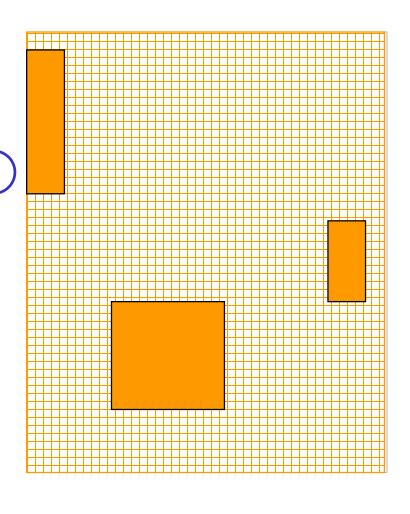
#### Different possible maps representations exist for path planning

- Paths (e.g., probabilistic road maps)
- Free space (e.g., Voronoi diagrams)
- Obstacles (e.g., geometric obstacles)
- Composite (e.g., grid maps)

#### Kinematics approximation in grid maps

- 4-orthogonal connectivity
- 4-diagonal connectivity
- 8-connectivity



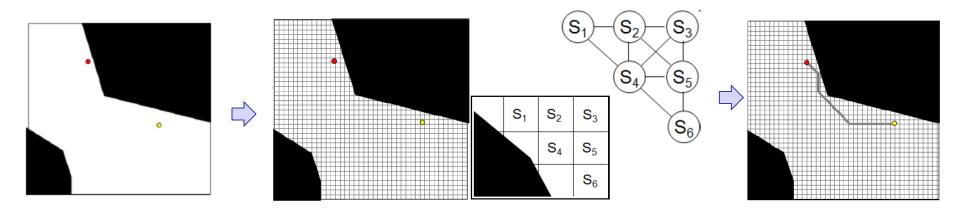




### **Graph (Search) Based Planning Basics**

#### The overall idea:

- Generate a discretized representation of the planning problem
- Build a graph out of this discretized representation (e.g., through 4 neighbors or 8 neighbors connectivity)
- Search the graph for the optimal solution



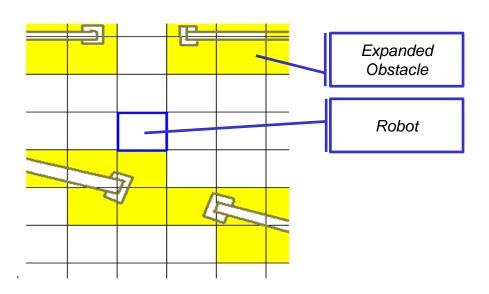
 Can interleave the construction of the representation with the search (i.e., construct only what is necessary)

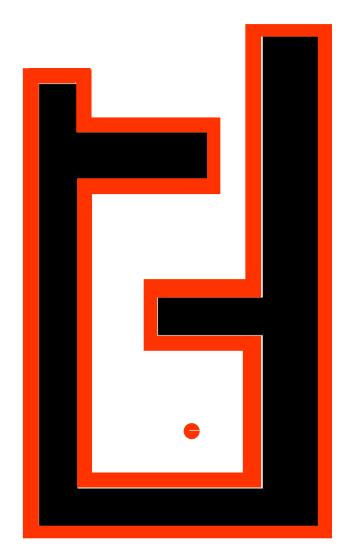


### **Robot shape**

A real mobile robot should not be modeled as a point; to take into account its shape obstacles are enlarged

This might generate some issues and a trade-off is between memory requirements and performance







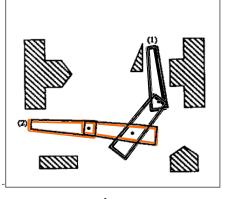
### **Configuration Space (C-Space)**

For non circular robots, collisions might depend on the orientation.

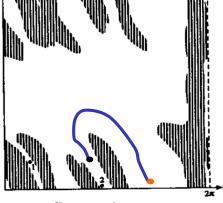
The C-Space is used to speed up collision detection

- A configuration of an object is a point q = (q1, q2,...,qn)
- Point q is free if the robot in q does not collide
- C-obstacle = union of all q where the robot collides
- C-free = union of all free q
- Cspace = C-free + C-obstacle

Start Configu



workspace



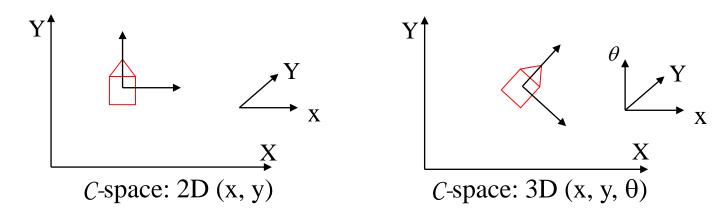
configuration space

Planning can be performed in C-Space

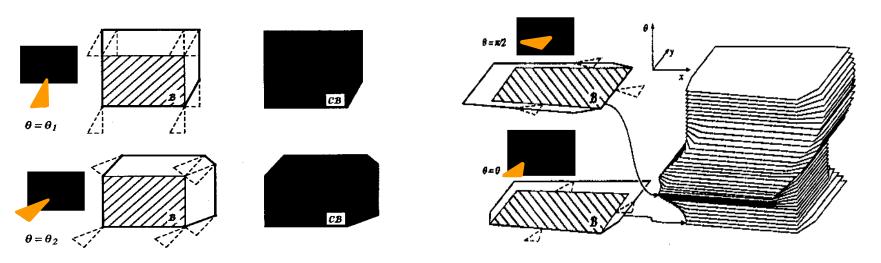


### **Mobile robots C-Space**

A robot can translate in the plane and/or rotate



Obstacles should be expanded according to the robot orientation

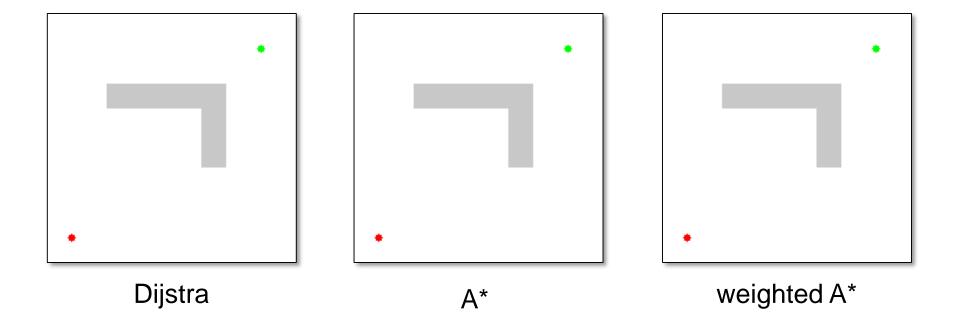




### **Exact and Approximate Planning (in SBPL)**

#### Different algorithms are available

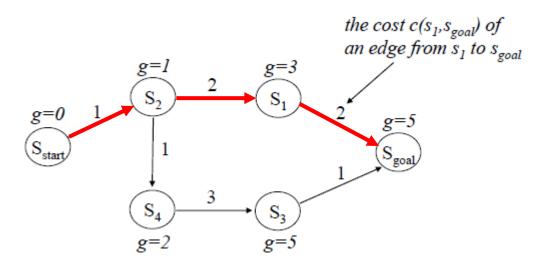
- Returning the optimal path (e.g., Dijstra, A\*, ...)
- Returning an ε sub-optimal path (e.g., weighted A\*, ARA\*, AD\*, R\*, D\* Lite, ...)





### **Searching Graphs for Least Cost Path**

Given a graph search for the path that minimizes costs as much as possible



Many search algorithms compute optimal <u>g-values</u> for relevant states

- g(s)—an estimate of the cost of a least-cost path from  $s_{start}$  to s
- optimal values satisfy:  $g(s) = \min_{s'' \text{ in pred(s)}} g(s'') + c(s'', s)$

Least-cost path is a greedy path computed by backtracking:

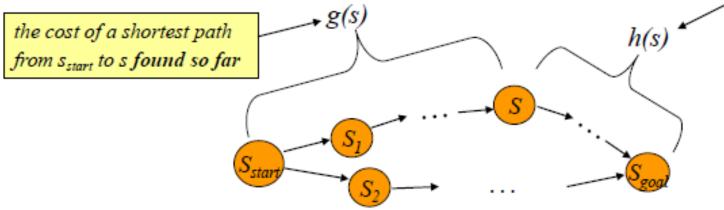
 start with s<sub>goal</sub> and from any state s move to the predecessor state s' such that

s' = argmin 
$$s'' = argmin_{s'' = argmin_{s'$$



#### A\* speeds up search by computing g-values for relevant states as

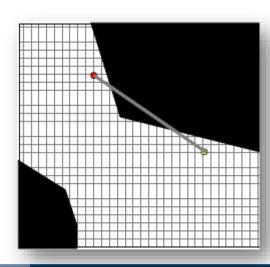
an (under) estimate of the cost of a shortest path from s to  $s_{goal}$ 



Heuristic function must be

- admissible: for every state s, h(s) ≤ c\*(s,s<sub>goal</sub>)
- consistent (satisfy triangle inequality):
  - $h(s_{goal}, s_{goal}) = 0$
  - for every  $s \neq s_{goal}$ ,  $h(s) \leq c(s, succ(s)) + h(succ(s))$

Admissibility follows from consistency and often consistency follows from admissibility





#### **Main function**

- $g(s_{start}) = 0$ ; all other g-values are infinite;
- $OPEN = \{s_{start}\};$
- ComputePath();

Set of candidates for expansion

#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - expand s; ←

For every expanded state g(s) is optimal (if heuristics are consistent)



#### **Main function**

- $g(s_{start}) = 0$ ; all other g-values are infinite;
- $OPEN = \{s_{start}\};$
- ComputePath();

Set of candidates for expansion

#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s<sub>such</sub> that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

Set of states already expanded

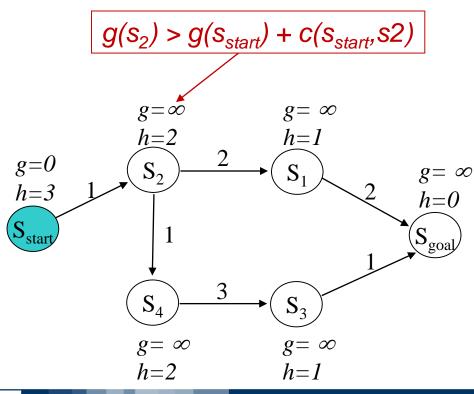
Tries to decrease g(s') using the found path from  $s_{start}$  to s



#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

 $CLOSED = \{\}$   $OPEN = \{s_{start}\}$  $next \ state \ to \ expand: \ s_{start}$ 

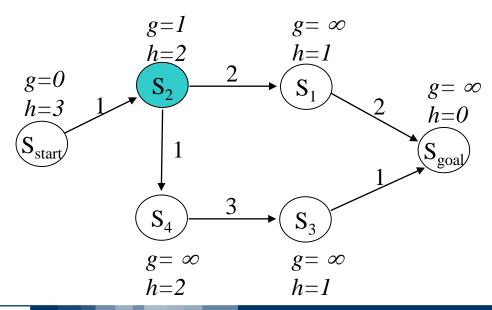




#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

 $CLOSED = \{s_{start}\}$   $OPEN = \{s_2\}$  $next \ state \ to \ expand: \ s_2$ 

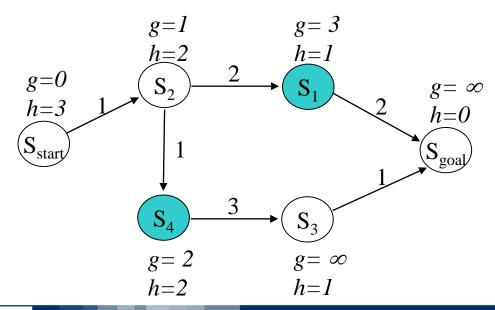




#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$   $OPEN = \{s_1, s_4\}$  $next \ state \ to \ expand: s_1$ 

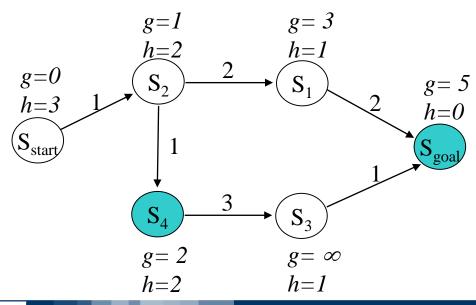




### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2, s_1\}$   $OPEN = \{s_4, s_{goal}\}$  $next \ state \ to \ expand: s_4$ 

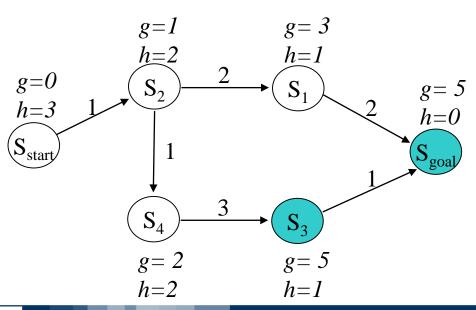




#### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2, s_1, s_4\}$   $OPEN = \{s_3, s_{goal}\}$  $next \ state \ to \ expand: s_{goal}$ 



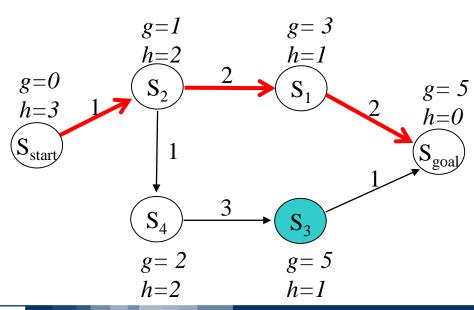


### **ComputePath function**

- while(s<sub>qoal</sub> is not expanded)
  - remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
  - insert s into CLOSED;
  - for every successor s'of s such that s' not in CLOSED
    - if g(s') > g(s) + c(s,s')
      - g(s') = g(s) + c(s,s');
      - insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}$$
  
 $OPEN = \{s_3\}$ 

DONE!





#### A\* is guaranteed to

- return an optimal path in terms of the solution
- perform provably minimal number of state expansions

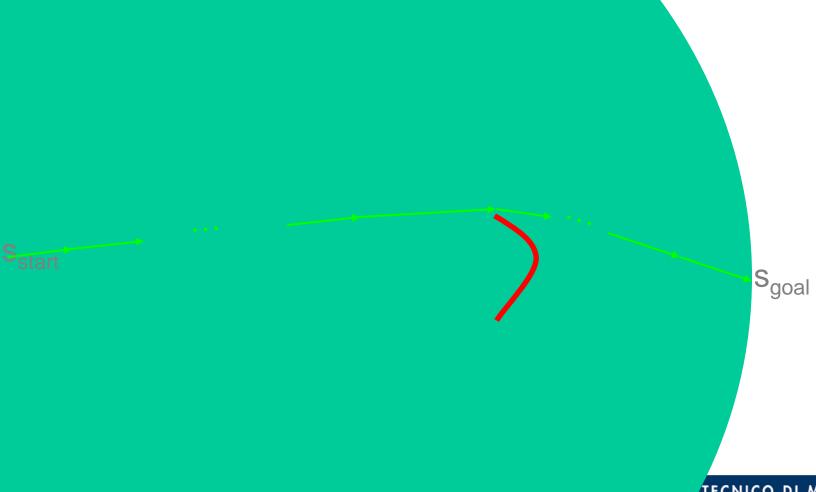
#### Algorithms state expansion:

- Dijkstra's: expands states in the order of f = g values (roughly)
- A\* Search: expands states in the order of f = g + h values
- Weighted A\*:expands states in the order of  $f = g + \varepsilon h$  values,  $\varepsilon > 1$ = bias towards states that are closer to goal

Weighted A\* Search in many domains, it has been shown to be orders of magnitude faster than A\*

### Algorithms state expansion:

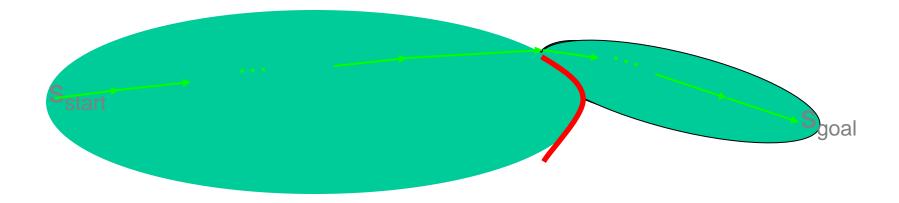
• Dijkstra's: expands states in the order of f = g values (roughly)





### Algorithms state expansion:

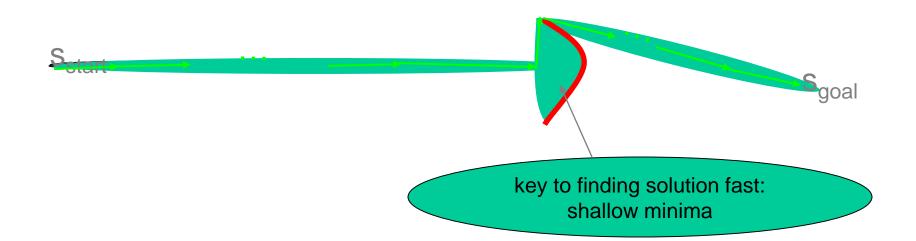
- Dijkstra's: expands states in the order of f = g values (roughly)
- A\* Search: expands states in the order of f = g + h values





#### Algorithms state expansion:

- Dijkstra's: expands states in the order of f = g values (roughly)
- A\* Search: expands states in the order of f = g + h values
- Weighted A\*:expands states in the order of  $f = g + \varepsilon h$  values,  $\varepsilon > 1$ = bias towards states that are closer to goal





### **Planning Problem Ingredients**

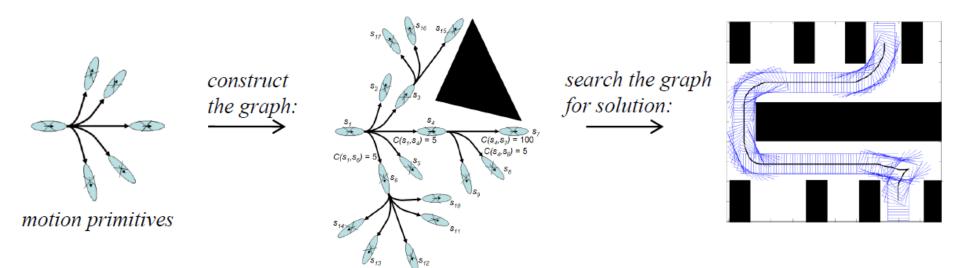
#### Typical components of a Search-based Planner

**Domain Independent** 

- Graph search algorithm (for example, A\* search)
- Graph construction (given a state what are its successor states)
- Cost function (a cost associated with every transition in the graph)
- Heuristic function (estimates of cost-to-goal)

**Domain Dependent** 

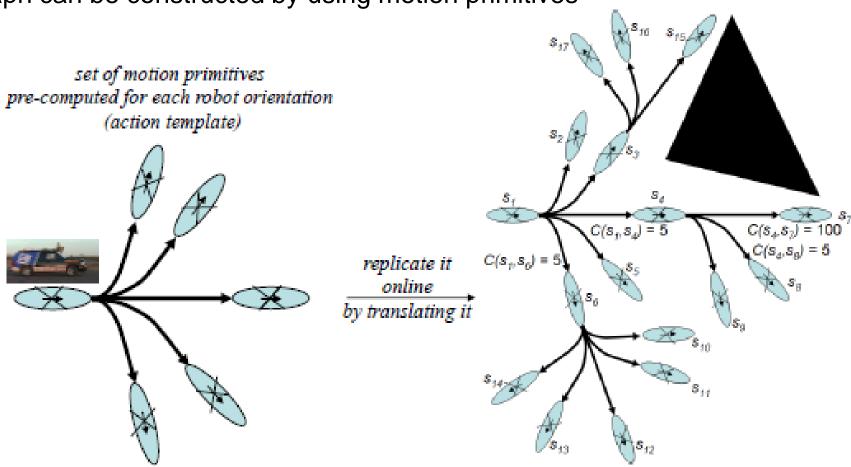
The graph can take into account robot dynamics/kinematics constraints





## **Lattice Based Graphs for Navigation**

Graph can be constructed by using motion primitives



- Pros: sparse graph, feasible path, incorporate a variety of constraints
- Cons: possible incompleteness



### **Lattice Based Graphs for Navigation**

#### Graph can be constructed by using motion primitives

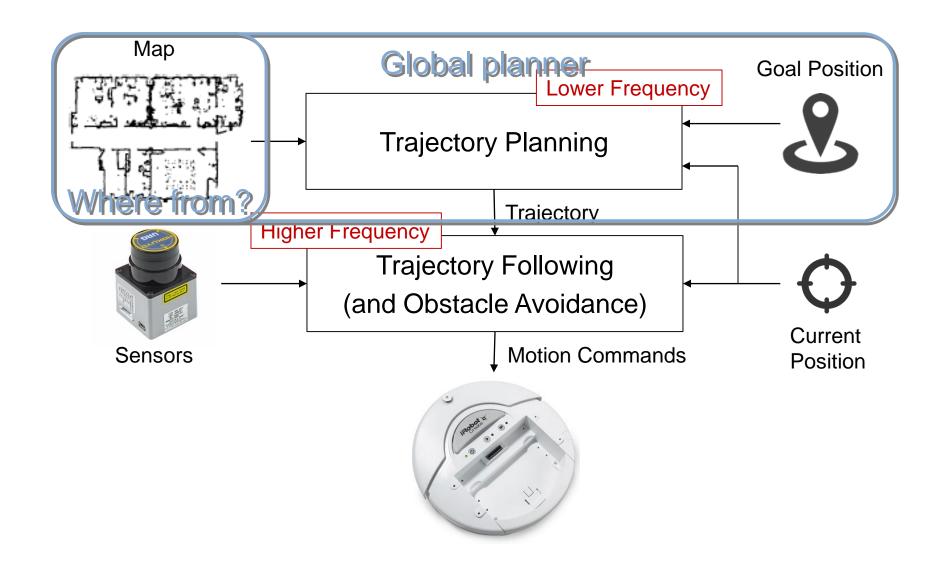
- Pros: sparse graph, feasible path, incorporate a variety of constraints
- Cons: possible incompleteness



planning on 4D (<x,y,orientation,velocity>) multi-resolution lattice using Anytime D\*
[Likhachev & Ferguson, '09]



## **A Two Layered Approach**







# **Cognitive Robotics – Robot Motion Planning**

Matteo Matteucci – matteo.matteucci@polimi.it