
Robot Motion Control
Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

Open loop control

A mobile robot is meant to move from one place to another

• Pre-compute a smooth trajectory

based on motion segments (e.g., line

and circle segments) from start to goal

• Execute the planned trajectory along

the way till the goal

Disadvantages:

• Not an easy task to pre-compute

a feasible trajectory

• Limitations and constraints of the robots

velocities and accelerations

• Does not handle dynamical changes

in the environment

• Resulting trajectories are usually not smooth

2

yI

xI

goal

Matteo Matteucci – matteo.matteucci@polimi.it

Feedback control (diff drive example)

With feedback control the trajectory

is recomputed and adapted online

We can design a simple control schema

for path following:

• First we close a speed

control loop on the wheels

• Then divide the problem in:

• Control of the orientation

• Control of the distance

Control orientation acting on angular velocity

Control distance acting on linear velocity

3

Matteo Matteucci – matteo.matteucci@polimi.it

Feedback control (diff drive example)

With feedback control the trajectory

is recomputed and adapted online

We can design a simple control schema

for path following:

• First we close a speed

control loop on the wheels

• Then divide the problem in:

• Control of the orientation

• Control of the distance

Control orientation acting on angular velocity

Control distance acting on linear velocity

A simple logic handles the next point

4

Matteo Matteucci – matteo.matteucci@polimi.it

Next Point

Sequencing

Position

Control

Orientation

Control

Desired path

Speed

Control

Speed

Control

Feedback control (diff drive example)

5

Planned

Trajectory

Point

sequencing

Inner control loop

for velocities

Inverse

kinematics Direct kinematics

(Odometry)

What about obstacles?

Who does provide the trajectory?

Do you trust direct kinematics?

Trajectory

following

Matteo Matteucci – matteo.matteucci@polimi.it

Local planner

A Two Layered Approach

7

Trajectory Planning

Trajectory Following

(and Obstacle Avoidance)

Goal Position

Higher Frequency

Lower Frequency

Current

Position

Trajectory

Motion Commands

Map

Sensors

Matteo Matteucci – matteo.matteucci@polimi.it

Obstacle Avoidance (Local Path Planning)

Obstacle avoidance should:

• Follow the planned path

• Avoid unexpected obstacle,

i.e., those that were not in the map

Several proposed methods in the literature

• Potential field methods

[Borenstein, 1989]

• Vector field histogram

[Borenstein, 1991, 1998, 2000]

• Nearness diagram

[Minguez & Montano, 2000]

• Curvature-Velocity [Simmons, 1996]

• Dynamic Window Approach

[Fox, Burgard, Thrun, 1997]

• …

8

Sometimes used

for planning

Matteo Matteucci – matteo.matteucci@polimi.it

The Simplest One …

“Bugs” have little if any knowledge …

• known direction to the goal

• only local sensing (walls/obstacles + encoders)

… and their world is reasonable!

• finite obstacles in any finite range

• a line intersects an obstacle finite times

Switch between two basic behaviors

1. head toward goal

2. follow obstacles until you can

head toward the goal again

9

assume a leftist

robot

Matteo Matteucci – matteo.matteucci@polimi.it

Bugs and Features …

Each obstacle is fully circled before it is left at the point closest to the goals

• Advantages

• No global map required

• Completeness guaranteed

• Disadvantages

• Solution are often highly suboptimal

10

Matteo Matteucci – matteo.matteucci@polimi.it

Vector Field Histograms (VHF) [Borenstein et al. 1991]

11

Use a local map of the environment and evaluate the angle to drive towards

• Environment represented in a grid (2 DOF) with

• The steering direction is computed in two steps:

• all openings for the robot to pass are found

• the one with lowest cost function G is selected

target_direction = alignment of the robot path with the goal
wheel_orientation = difference between the new direction and the currrent wheel orientation
previous_direction = difference between the previously selected direction and the new direction

B
o
re

n
st

ei
n

et
a

l.

Matteo Matteucci – matteo.matteucci@polimi.it

Curvature Velocity Methods (CVM) [Simmons et al. 1996]

CVMs add physical constraints from the robot and the environment on (v, w)

• Assumption that robot is traveling on arcs (c= w / v) with acceleration

constraints

• Obstacles are transformed in velocity space

• An objective function to select the optimal speed

12

Simmons et al.

Matteo Matteucci – matteo.matteucci@polimi.it

Vector Field Histogram+ (VFH+) [Borenstein et al. 1998]

VHF+ accounts also in a very simplified way for vehicle kinematics

• robot moving on arcs or straight lines

• obstacles blocking a given direction

also blocks all the trajectories (arcs)

going through this direction like in an

Ackerman vehicle

• obstacles are enlarged so that all

kinematically blocked trajectories

are properly taken into account

However VHF+ as VHF suffers

• Limitation if narrow areas (e.g. doors) have to be passed

• Local minima might not be avoided

• Reaching of the goal can not be guaranteed

• Dynamics of the robot not really considered

13

Borenstein et al.

Matteo Matteucci – matteo.matteucci@polimi.it

Dynamic Window Approach (DWA) [Fox et al. 1997]

The kinematics of the robot are considered via local search in velocity space:

• Consider only circular trajectories determined by pairs Vs=(v,ω) of

translational and rotational speeds

• A pair Va=(v, ω) is considered admissible, if the robot is able to stop

before it reaches the closest obstacle on the corresponding curvature.

• A dynamic window restricts the reachable velocities Vd to those that

can be reached within a short time given limited robot accelerations

14

Vr Vs Va Vd

DWA Search Space

Fox et al.

Matteo Matteucci – matteo.matteucci@polimi.it

How to choose (v,ω)?

Steering commands are chosen maximizing a heuristic navigation function:

• Minimize the travel time by “driving fast in the right direction”

• Planning restricted to Vr space [Fox, Burgard, Thrun ‘97]

• Global approach [Brock & Khatib 99] in <x,y>-space uses

15

Alignment with

target direction

Distance to closest obstacle

intersecting with curvature

Forward velocity of

the robot

Gv,  heading(v,) dist(v,) velocity(v,)

Forward robot velocity

Cost to reach the goal Goal nearness

Follows global path

Matteo Matteucci – matteo.matteucci@polimi.it

DWA Algorithm (as implemented in ROS movebase)

The basic idea of the Dynamic Window Approach (DWA) algorithm follows …

1. Discretely sample robot control space

2. For each sampled velocity, perform

forward simulation from current state

to predict what would happen if applied

for some (short) time.

3. Evaluate (score) each trajectory

resulting from the forward simulation

4. Discard illegal trajectories, i.e.,

those that collide with obstacles, and

pick the highest-scoring trajectory

What about non circular kinematics?

16

Clothoid:

Matteo Matteucci – matteo.matteucci@polimi.it

A Two Layered Approach

17

Trajectory Planning

Trajectory Following

(and Obstacle Avoidance)

Goal Position

Higher Frequency

Lower Frequency

Current

Position

Trajectory

Motion Commands

Map

Sensors

Global planner

Matteo Matteucci – matteo.matteucci@polimi.it

Robot Motion Planning

“…eminently necessary since, by definition,

a robot accomplishes tasks by moving in the real world.”

J.-C. Latombe (1991)

Robot Motion Planning Goals

• Collision-free trajectories

• Robot should reach the goal

location as fast as possible

Information available

• Map with obstacles

• Robot shape and kinematics

18

Matteo Matteucci – matteo.matteucci@polimi.it

Different possible maps representations exist for path planning

• Paths (e.g., probabilistic road maps)

• Free space (e.g., Voronoi diagrams)

• Obstacles (e.g., geometric obstacles)

• Composite (e.g., grid maps)

Planning on grid maps

19

Matteo Matteucci – matteo.matteucci@polimi.it

What a Planner?

Search Based Planning Algorithms

• A*

• ARA*

• ANA*

• AD*

• D*

• …

Random Sampling

• PRMs

• RRT

• T-RRT

• SBL

• …

20

Search

Based

Planning

Library

Open

Motion

Planning

Library

Matteo Matteucci – matteo.matteucci@polimi.it

Pros and Cons

PROS CONS

Search Based

Planning

• Finds the optimal solution

• Possible to assign costs

• Use of Heuristics

• Can state if a solution

exists (complete)

• High computational

cost

Random Sampling

Planning

• Fast in finding a feasible

solution

• Hard to assign costs

• Only probably complete

(cannot be used to test

for existance)

21

Lets have a look at Search Based Methods (SBPL) because of

• Their simplicity (at least in description)

• The generality of approaches

• Their theoretical guarantees

(if connectivity assumptions hold)

Matteo Matteucci – matteo.matteucci@polimi.it

Different possible maps representations exist for path planning

• Paths (e.g., probabilistic road maps)

• Free space (e.g., Voronoi diagrams)

• Obstacles (e.g., geometric obstacles)

• Composite (e.g., grid maps)

Kinematics approximation in grid maps

• 4-orthogonal

connectivity

• 4-diagonal

connectivity

• 8-connectivity

Planning on grid maps

22

1

5

2 3

8

7 6

4

Matteo Matteucci – matteo.matteucci@polimi.it

The overall idea:

• Generate a discretized representation of the planning problem

• Build a graph out of this discretized representation (e.g., through 4

neighbors or 8 neighbors connectivity)

• Search the graph for the optimal solution

• Can interleave the construction of the representation with the search

(i.e., construct only what is necessary)

Graph (Search) Based Planning Basics

23

Matteo Matteucci – matteo.matteucci@polimi.it

Robot shape

A real mobile robot should not be modeled as a point;

to take into account its shape obstacles are enlarged

This might generate some issues and a trade-off

is between memory requirements and performance

24

Robot

Expanded

Obstacle

Matteo Matteucci – matteo.matteucci@polimi.it

For non circular robots, collisions might depend on the orientation.

The C-Space is used to speed up

collision detection

• A configuration of an object

is a point q = (q1, q2,…,qn)

• Point q is free if the robot

in q does not collide

• C-obstacle = union of all q

where the robot collides

• C-free = union of all free q

• Cspace = C-free + C-obstacle

Planning can be performed in C-Space

Configuration Space (C-Space)

25

workspace configuration space

Matteo Matteucci – matteo.matteucci@polimi.it

Mobile robots C-Space

A robot can translate in the plane and/or rotate

Obstacles should be expanded according to the robot orientation

26

X

Y

C-space: 3D (x, y, )



x

Y

C-space: 2D (x, y)

X

Y

x

Y

Matteo Matteucci – matteo.matteucci@polimi.it

Exact and Approximate Planning (in SBPL)

Different algorithms are available

• Returning the optimal path (e.g., Dijstra, A*, …)

• Returning an ε sub-optimal path

(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...)

27

Dijstra A* weighted A*

Matteo Matteucci – matteo.matteucci@polimi.it

Searching Graphs for Least Cost Path

Given a graph search for the path that minimizes costs as much as possible

Many search algorithms compute optimal g-values for relevant states

• g(s)–an estimate of the cost of a least-cost path from sstart to s

• optimal values satisfy: g(s) = mins’’ in pred(s) g(s’’) + c(s’’,s)

Least-cost path is a greedy path computed by backtracking:

• start with sgoal and from any state s move to the predecessor state s’

such that

s’ =argmin s’’ in pred(s) (g(s’’)+c(s’’,s))

28

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search

A* speeds up search by computing g-values for relevant states as

Heuristic function must be

• admissible: for every state s, h(s) ≤ c*(s,sgoal)

• consistent (satisfy triangle inequality):

• h(sgoal,sgoal) = 0

• for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

Admissibility follows from consistency and often

consistency follows from admissibility

29

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite;

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

• expand s;

30

Set of candidates for expansion

For every expanded state g(s) is optimal

(if heuristics are consistent)

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite;

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of ssuch that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

31

Set of candidates for expansion

Set of states already expanded

Tries to decrease g(s’) using the

found path from sstart to s

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2}

OPEN = {s1,s4}

next state to expand: s1

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1}

OPEN = {s4,sgoal}

next state to expand: s4

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 , s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 ,s4 , sgoal}

OPEN = {s3}

DONE!

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

Matteo Matteucci – matteo.matteucci@polimi.it

A* Properties

A* is guaranteed to

• return an optimal path in terms of the solution

• perform provably minimal number of state expansions

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values,

ε> 1= bias towards states that are closer to goal

Weighted A* Search in many domains, it has been shown to be orders of

magnitude faster than A*

38

Matteo Matteucci – matteo.matteucci@polimi.it39

A* Properties

sgoal

sstart

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

Matteo Matteucci – matteo.matteucci@polimi.it

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

sgoal

sstart

A* Properties

40

Matteo Matteucci – matteo.matteucci@polimi.it

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values,

ε> 1= bias towards states that are closer to goal

A* Properties

sstart
sgoal

key to finding solution fast:

shallow minima

41

Matteo Matteucci – matteo.matteucci@polimi.it

Planning Problem Ingredients

Typical components of a Search-based Planner

• Graph search algorithm (for example, A* search)

• Graph construction (given a state what are its successor states)

• Cost function (a cost associated with every transition in the graph)

• Heuristic function (estimates of cost-to-goal)

The graph can take into account robot dynamics/kinematics constraints

42

Domain Dependent

Domain Independent

Matteo Matteucci – matteo.matteucci@polimi.it

Lattice Based Graphs for Navigation

Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness

43

Matteo Matteucci – matteo.matteucci@polimi.it

Lattice Based Graphs for Navigation

Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness

44

Matteo Matteucci – matteo.matteucci@polimi.it

A Two Layered Approach

46

Trajectory Planning

Trajectory Following

(and Obstacle Avoidance)

Goal Position

Higher Frequency

Lower Frequency

Current

Position

Trajectory

Motion Commands

Map

Sensors

Global planner

Where from?

Cognitive Robotics – Robot Motion Planning
Matteo Matteucci – matteo.matteucci@polimi.it

