
ABOUT ME

Mentasti Simone, PhD student in CS and Mechanics
Contacts:

simone.mentasti@polimi.it

Research field:
Human vehicle interaction in autonomous connected
cars

Slide and example link:
https://goo.gl/GonArW

Logistics:

The classroom has no power source…
Is it a problem?

GAZEBOSIM AND SDF
ROBOTICS

WHAT IS A SIMULATION

Simulation is the imitation of the operation of a real-world process or
system over time.
The act of simulating something first requires to develop a model; this
model represents the key characteristics or behaviors/functions of the
selected physical or abstract system or process.
The model represents the system itself, whereas the simulation
represents the operation of the system over time.

FOR WHAT PURPOSE?

Robots…
are small and safe

can be easily tested in the filed

require real world interactions

But robots…
can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…
as engineers we know that everything should be based on
a well detailed project and should be tested and verified
before any real application

FOR WHAT PURPOSE?

Robots…
are small and safe

can be easily tested in the filed

require real world interactions

But robots…
can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…
as engineers we know that everything should be based on
a well detailed project and should be tested and verified
before any real application

FOR WHAT PURPOSE?

Robots…
are small and safe

can be easily tested in the filed

require real world interactions

But robots…
can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…
as engineers we know that everything should be based on
a well detailed project and should be tested and verified
before any real application Remember to test and simulate, it can save your life!

ROBOT SIMULATORS

GOOD
SIMULATOR

Realistic
rendering

Physics
simulation

Sensors
simulation

Simplicity
in building

robot
models

Flexibility

Integration
with robot

frameworks

ROBOT SIMULATORS

2D (player project)vs 3D (Gazebo)

Different programming languages (C++, Python, LUA, Ruby)

Different modeller (internal like Gazebo/esternal like Morse using Blender)

Different rendering engine (OpenGL, Blender, Java, Ogre)

Different sets of sensors (IMU, GPS, Collision, Laser, Cameras, ...)

ROBOT SIMULATORS

ROBOT SIMULATORS

BACK IN THE DAY…

ROS become
famous

Gazebo
become
famous

Gazebo
become part

of ROS

Gazebo
regain its

independenc
e

Currently at
version 8.0

Standard de facto
in robot software
development

Only available 3D
simulator for ROS

Development
frozen at v2.0

No more part of
ROS, but still
compatible

WHY GAZEBO?

Main features of Gazebo
Dynamic simulation based on various physics engines (ODE, Bullet, Simbody and DART)
Sensors (with noise) simulation
Plugin to customize robots, sensors and the environment
Realistic rendering of the environment and the robots
Library of robot models
ROS integration

Advanced features
Remote & cloud simulation
Open source

WHY GAZEBO?

Companies provides models of their robots

CUSTOMIZATION

• Modifying existing robot or sensor models
• Building our own robot or sensor models
• Modifying the behavior of existing robot models
• Controlling and defining a behavior for our own robot

models
• Creating specific environment compatible with our

experiments

What kind of customization are we looking for in a
simulator?

SYSTEM REQUIREMENTS

Gazebo is currently best used on Ubuntu.
I strongly suggest a computer with:

A dedicated GPU
Any modern CPU
At least 500MB of free disk space
Ubuntu Xenial

Versions used in this course:
Ubuntu 16.04 LTS (Xenial Xerus) & Gazebo 7.0

INSTALLATION

In a working installation of Ubuntu 16.04:
$ sudo apt-get update
$ sudo apt-get install gazebo7

To run Gazebo:
$ gazebo

PREDICTABLE QUESTIONS

What kind of existing knowledge do I need to use Gazebo? LITTLE
Can I use a different/newer/older version of Gazebo? YES (5.0/6.0/8.0)
Can I use a different/newer/older version of Ubuntu? YES
Can I use a different Linux distribution? YES
Can I use Windows/OS X? NO
Can I use a virtual machine? YES
Is the use of the simulator required for the project? YES
I know Gazebo and I hate it! Can I use another simulator? NO

Architecture

Separation of physics and visualization
server: physics and sensor generation ($ gzserver)
client: visualization and user interface ($ gzclient)

Socket communication
Protobuf provides message passing

Plugin interface
Control any aspect of simulation

Simulation Description Format (SDF)
XML based format for worlds and models

Architecture

Physics Rendering Interfaces User Interfaces

Rigid Body dinamics OpenGL Plugins and IPC GUI

ODE
Bullet

...

OGRE Google Protobuf
Boost ASIO

QT
CEGUI

Credits:
Nate Koenig

Architecture

Credits:
Nate Koenig

Enviroments

Credits:
Nate Koenig

Simple

Indoor

Outdoor

Creating Enviroments

Built into Gazebo

Creating Enviroments

Use external tools
SolidWorksBlender

Creating Enviroments

Download from the web
3dwarehouse.sketchup.com

CREATING AND MODIFYING A MODEL

Using the model editor
Newer versions of Gazebo provide tools to create and
modify models directly form the user interface
Create object and change their shape or position using
graphical tools
Nice little windows to customize physical and
geometrical parameters
Easily connect two object with a joint

Let’s see it in action!

Using simulation description format
(SDF)
SDF is an evolution of the unified robot description
format (URDF)
An XML file format that describes environments,
objects and robots for robotic simulation
Hierarchical and well defined
“Compact” description of a complete simulated world

Sounds complex but it’s powerful and
necessary

Link

https://goo.gl/GonArW

USING THE EDITOR

Why a graphical editor:
-easier
-faster (sometimes)
-visual feedback
-create good code

Open a terminal and run gazebo:
$ gazebo

Open the model editor:
Edit-> Model editor

USING THE EDITOR

Drag and drop a cube from the left panel to the
3D space

Click on the “Scale Mode” button to edit the
box dimensions

Change the dimensions to 2m long (x axis) and
0.5m high (z axis)

USING THE EDITOR

To change the position in a more accurate way
open the “Link editor” by double clicking on the
object

Change the Z Pose value to 0,4 m

USING THE EDITOR

Create a wheel by dragging a cylinder
Then rotate it, using the Link editor, by 90°
(1,5707 rad) on the x axis.

Now we can resize it, but not using the scale
button but with the Link editor.

Under the visual tab change radius to 0.3m and
length to 0.25m (this change only the object
appearance)

Then make the same changes under the
Collision tab (this will change the “behaviour” of
the object)

USING THE EDITOR

Copy and paste the “wheel” using the buttons
on the top panel

Now we have some components of our car, we
have to put them together and define their
behaviour

To do this we will use joints

ABOUT JOINTS

Some definition
“The links are the rigid members connecting the joints”

“The joints (also called axes) are the movable
components of the robot that cause relative motion
between adjacent links”

ABOUT JOINTS

ABOUT JOINTS

Degree of freedom definition:
“In a mechanical system is the number of
independent parameters that define its
configuration.”

ABOUT JOINTS

Prismatic (1 DoF)

Planar (3 DoF)

Screw (1 DoF)Revolute (1 DoF)

Cilindric (2 DoF) Sphere (3 DoF)

USING THE EDITOR

Click on the joint button
Select the joint type, in this case revolute

Then select parent link (in our case the vehicle
structure) and the child (one wheel)

Next select the joint axes, to make the wheel
correctly spin we select the Z axis (we will see a
yellow circle on the axis)

USING THE EDITOR

Last we select the Align links tab to attach the
wheel to the body we use:

x axis: align max
y axis: align min and reverse

To create the joint press create

USING THE EDITOR

To position the wheels above the ground we
will use again the link inspector and change the
Z pose value to 0.3m

For the other wheel we will use similar
parameters, but with y align max instead of y
align min in the align links tab

Next to create the rear wheel we will use a
sphere with 0.2m radius

USING THE EDITOR

Then we will apply a joint and position it above
the ground as previously shown

The rear will rotate on different direction, so
the joint type will not be Revolute but Ball

Last we will change the pose, with z axis value
to 0.2 m.

WRITING THE CODE

SDF
-xml
-Developed as part of Gazebo
-Describe robots and Scene
-Visual design environment
-SDF file in gazebo can interact with
ROS code

URDF
-xml
-Developed as part of ROS
-High ROS integration
-Describe only robots
-No official tools, just rviz to visualize
the “robot”
-URDF file can be imported in Gazebo

Two standard, SDF from Gazebo and URDF from ROS

XML
Markup language:
“A markup language is a system for annotating a
document in a way that is syntactically
distinguishable from the text”

Standard w3c

First version 1998

Created for web

Nowadays used in different fields:
-web
-DataBases
-interprocess communication

<?xml version="1.0" encoding="UTF-8"?>
<users>

<user>
<name>mario</name>
<surname>rossi</surname>
<age>26</age>

</user>
<user>

<name>Giovanni</name>
<surname>Giusti</surname>

</user>
</users>

https://en.wikipedia.org/wiki/Annotation
https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Syntax_(logic)
https://en.wikipedia.org/wiki/Syntax_(logic)

XML
Why XML?

Designed to transport data

Designed to be self descriptive

Does not use predefined tags

Is extensible

<?xml version="1.0" encoding="UTF-8"?>
<users>

<user>
<name>mario</name>
<surname>rossi</surname>
<age>26</age>

</user>
<user>

<name>Giovanni</name>
<surname>Giusti</surname>

</user>
</users>

XML
How it works?

-Prolog (version and encoding)

-Tags

-Three structure

-Attribute (optional)

<?xml version="1.0" encoding="UTF-8"?>
<users>

<user category=”admin”>
<name>mario</name>
<surname>rossi</surname>
<age>26</age>

</user>
<user category=”simple_user”>

<name>Giovanni</name>
<surname>Giusti</surname>

</user>
</users>

XML
<?xml version="1.0" encoding="UTF-8"?>
<users>

<user category=”admin”>
<name>mario</name>
<surname>rossi</surname>
<age>26</age>

</user>
<user category=”simple_user”>

<name>Giovanni</name>
<surname>Giusti</surname>

</user>
</users>

SIMULATION DESCRIPTION FORMAT

As any XML file is composed by tags, but differently
from some XML files the structure is quite simple
Tag structure:

sdf
world

model

actor

light

<?xml version='1.0'?>

<sdf version='1.6'>

 <world name='default'>

 ...

 </world>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

 <model name='model'>

 ...

 </model>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

 <actor name='act'>

 ...

 </actor>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

 <light name='light'>

 ...

 </light>

</sdf>

SDF/ WORLD

The world represent everything inside the simulation ready to be simulated
Most important available child tags are: scene, light, model, actor, plugin, gui, include

Physics related child tags: physics, gravity, magnetic_field, spherical_coordinates

More child tags: audio, atmosphere, wind, road, state, population

sdf (model)/(light, model, actor) VS world/(light, model, actor)

A valid SDF file may contain only a single or a list object and act as an “archive”, model can be reused in
different world
A world can contain different model inside the world tag
A world can include external model file

SDF/MODEL

What is a model?
A container for the elements of the robot (attributes: name)
Composed by links and joints, or other models.
Use the include tag to include previously defined models. Recursion can create really complex
structures.

What is a link?
Any rigid element of the robot. Child of the model tag.
It has physical and visual properties and collisions

SDF/MODEL

What is a joint?
Connects two links together with kinematic and dynamics properties
Various type of joint are available depending on the behavior of the links (revolute, spherical, …)
Always defined between a parent link and a child link

pose and frame are two key elements of each of these component. Together they
define the position and orientation of each element with respect to another. The
correct use of reference frame can vastly simplify the construction of any complex
robot.

MORE ABOUT MODELS

Models have complex structures may include various component to improve they
appearance and behavior.
A specific folder structure is used to define a model:

.gazebo/models/my_model: our model folder inside the main Gazebo folder
model.config: Meta-data about the model
model.sdf: SDF description of the model
meshes: a directory for all COLLADA STL files, or obj files
materials/texture & material/scripts: texture images and material scripts
plugins: a directory for all the code used to define the behavior of the model

SDF DEFINITION

Looks pretty simple, is this all?! Of course not
You can find the complete description of SDF here:

http://sdformat.org/spec

http://sdformat.org/spec

GENERATED CODE

Open the file generated by Gazebo (model.sdf)
<?xml version='1.0'?>
<sdf version='1.6'>
 <model name='Es1'>
 <link name='link_3'>
 <pose frame=''>-0.140499 0 0.1 0 -0 0</pose>
 <inertial>
 <mass>1.17432</mass>
 <inertia>
<pose frame=''>0 0 0 0 -0 0</pose>
 </inertial>
 <gravity>1</gravity>
 <self_collide>0</self_collide>
 <kinematic>0</kinematic>
 <visual name='visual'>
 <pose frame=''>0 0 0 0 -0 0</pose>
 <geometry>
 <box>
 <size>1.92399 1 0.61035</size>
 </box>
 <lighting>1</lighting>
 <script>

<uri>file://media/materials/scripts/gazebo.material</uri>
….

File Name
Part Name
Pose
Stuff we didn't choose
Size

LET’S SEE AN EXAMPLE

Create a model directory: mkdir -p ~/.gazebo/models/willy2
Create the configuration file: gedit ~/.gazebo/models/willy2/model.config
Fill the configuration file:

mailto:robert.builder@polimi.it

LET’S SEE AN EXAMPLE

Create the sdf file: gedit ~/.gazebo/models/willy2/model.sdf
Fill the sdf file:

BUILDING THE ROBOT

It’s important to build the robot progressively, start with a simple base and add up the other elements
The result we want it’s something like this:

For this we need only a simple link shaped like a box
Add the code (next slide) inside the model tag

BUILDING THE ROBOT

ADDING A CASTER
A caster is a simple wheel with no
constraint, it’s not connected to
the body of the robot using a joint,
it’s used only to sustain the weight.
Since there is no joint we can add
it to the base using a second
collision without defining a new
link.
Insert the code from the next
slides inside the link tags

ADDING A CASTER

ADDING A CASTER

ADDING THE WHEELS

The two wheels are real wheels,
not like the caster. They are the
source of the movement of the
robot and they will be controlled.
The wheels are defined as links
and are connected to the body of
the robot using joints.

ADDING THE WHEELS

ADDING THE WHEELS

ADDING THE JOINTS

We use joints to connect the wheels to the chassis.
Since the wheels are constrained in any direction of movement except
for the rotation around an axis we use a revolute joint.

ADDING THE JOINTS

