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ቐ

ሶ𝑥𝑈 = 𝑣 cos 𝜃
ሶ𝑦𝑈 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔
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Model and feedback linearization

Our first goal is to find a way to linearize the system’s

dynamics or, in a way, to force the system to behave as a linear 

system.

We resort to feedback linearization.
Two different approaches can be taken.

v

𝜃

𝑥𝑈

𝑦𝑈



ሶ𝑥𝑈 = 𝑣 cos 𝜃
ሶ𝑦𝑈 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔
ሶ𝑣 = 𝑎
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Model and feedback linearization – first approach

We define 𝑎𝑥 = cos 𝜃𝑎 − 𝑣 sin 𝜃 𝜔
𝑎𝑦 = sin 𝜃𝑎 + 𝑣 cos 𝜃 𝜔

and the model becomes

ሶ𝑥𝑈 = 𝑣𝑥
ሶ𝑦𝑈 = 𝑣𝑦
ሶ𝑣𝑥 = 𝑎𝑥
ሶ𝑣𝑦 = 𝑎𝑦

Inputs of the 
linearized model Real inputs of the unicycle

𝑎
𝜔

=
cos 𝜃 −𝑣 sin 𝜃
sin 𝜃 𝑣 cos 𝜃

−1 𝑎𝑥
𝑎𝑦

=
1

𝑣
𝑣 cos 𝜃 𝑣 sin 𝜃
−sin 𝜃 cos 𝜃

𝑎𝑥
𝑎𝑦

ሶ𝑥𝑈 = 𝑣𝑥
ሶ𝑦𝑈 = 𝑣𝑦

ሶ𝑣𝑥 = cos 𝜃 ሶ𝑣 − 𝑣 sin 𝜃 ሶ𝜃 = cos 𝜃𝑎 − 𝑣 sin 𝜃 𝜔

ሶ𝑣𝑦 = sin 𝜃 ሶ𝑣 + 𝑣 cos 𝜃 ሶ𝜃 = sin 𝜃𝑎 + 𝑣 cos 𝜃 𝜔
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𝑎𝑥

𝑎𝑦

𝑥𝑈

𝑦𝑈

ሶ𝑥𝑈 = 𝑣𝑥
ሶ𝑦𝑈 = 𝑣𝑦
ሶ𝑣𝑥 = 𝑎𝑥
ሶ𝑣𝑦 = 𝑎𝑦

𝑎𝑥

𝑎𝑦

𝑥𝑈

𝑦𝑈

1

𝑣
𝑣 cos 𝜃 𝑣 sin 𝜃
−sin 𝜃 cos 𝜃

𝑎𝑥
𝑎𝑦

𝑎

𝜔

ሶ𝑥𝑈 = 𝑣 cos 𝜃
ሶ𝑦𝑈 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔
ሶ𝑣 = 𝑎

𝜃, 𝑣

Model and feedback linearization – first approach
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ሶ𝑥𝑈 = 𝑣𝑥
ሶ𝑦𝑈 = 𝑣𝑦
ሶ𝑣𝑥 = 𝑎𝑥
ሶ𝑣𝑦 = 𝑎𝑦

Feedback-linearized
model:

Discrete time feedback-linearized model (sampling time 𝜏)
𝑥𝑈(𝑘 + 1)
𝑣𝑥(𝑘 + 1)
𝑦𝑈(𝑘 + 1)
𝑣𝑦(𝑘 + 1)

=

1
0
0
0

𝜏
1
0
0

0
0
1
0

0
0
𝜏
1

𝑥𝑈(𝑘)
𝑣𝑥(𝑘)
𝑦𝑈(𝑘)
𝑣𝑦(𝑘)

+

𝜏2/2
𝜏
0
0

0
0

𝜏2/2
𝜏

𝑎𝑥(𝑘)
𝑎𝑦(𝑘)

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)

Output: position 𝑥𝑈(𝑘)
𝑦𝑈(𝑘)

=
1
0
0
0
0
1
0
0

𝑥𝑈(𝑘)
𝑣𝑥(𝑘)
𝑦𝑈(𝑘)
𝑣𝑦(𝑘)

= 𝐶𝑥(𝑘)

Model and feedback linearization – first approach
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Model and feedback linearization

ቐ

ሶ𝑥𝑈 = 𝑣 cos 𝜃
ሶ𝑦𝑈 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔

v

𝜃

𝑥𝑈

𝑦𝑈

P
𝜖

𝑥𝑃 = 𝑥𝑈 + 𝜖 cos 𝜃
𝑦𝑃 = 𝑦𝑈 + 𝜖 sin 𝜃

൝
ሶ𝑥𝑃 = ሶ𝑥𝑈 − 𝜖 sin 𝜃 ሶ𝜃 = 𝑣 cos 𝜃 − 𝜔𝜖 sin 𝜃

ሶ𝑦𝑃 = ሶ𝑦𝑈 + 𝜖 cos 𝜃 ሶ𝜃 = 𝑣 sin 𝜃 + 𝜔𝜖 cos 𝜃

Model and feedback linearization – second approach
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We define 𝑣𝑥 = 𝑣 cos 𝜃 − 𝜔𝜖 sin 𝜃
𝑣𝑦 = 𝑣 sin 𝜃 + 𝜔𝜖 cos 𝜃

and the model becomes

൝
ሶ𝑥𝑃 = 𝑣𝑦
ሶ𝑦𝑃 = 𝑣𝑦

Inputs of the 
linearized model

Real inputs of the unicycle

𝑣
𝜔

=
cos 𝜃 −𝜖 sin 𝜃
sin 𝜃 𝜖 cos 𝜃

−1 𝑣𝑥
𝑣𝑦

=
1

𝜖
𝜖 cos 𝜃 𝜖 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

ቊ
ሶ𝑥𝑃 = 𝑣 cos 𝜃 − 𝜔𝜖 sin 𝜃
ሶ𝑦𝑃 = 𝑣 sin 𝜃 + 𝜔𝜖 cos 𝜃

Model and feedback linearization – second approach
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𝑎𝑥

𝑎𝑦

𝑥𝑈

𝑦𝑈

𝑣𝑥

𝑣𝑦

𝑥𝑃

𝑦𝑃

𝑣

𝜔

𝜃

1

𝜖
𝜖 cos 𝜃 𝜖 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

ቐ

ሶ𝑥𝑈 = 𝑣 cos 𝜃
ሶ𝑦𝑈 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔

൝
ሶ𝑥𝑃 = 𝑣𝑦
ሶ𝑦𝑃 = 𝑣𝑦

Model and feedback linearization – second approach
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ቊ
ሶ𝑥𝑃 = 𝑣𝑥
ሶ𝑦𝑃 = 𝑣𝑦

Feedback-linearized
model:

Discrete time feedback-linearized model (sampling time 𝜏)

𝑥𝑈(𝑘 + 1)
𝑦𝑈(𝑘 + 1)

=
1 0
0 1

𝑥𝑈(𝑘)
𝑦𝑈(𝑘)

+
𝜏
0
0
𝜏

𝑣𝑥(𝑘)
𝑣𝑦(𝑘)

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)

Model and feedback linearization – second approach

Output: position (i.e., the whole state)

𝑦(𝑘) =
1 0
0 1

𝑥𝑈(𝑘)
𝑦𝑈(𝑘)

= 𝐶𝑥(𝑘)
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𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢(𝑘)

Goals and constraints

With any feedback linearization approach we obtain the linear 
model

𝑦 𝑘 = 𝐶𝑥 𝑘
position

We aim to solve the simplest problem, i.e., the parking problem

Starting point Goal
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Goals and constraints

To fulfill this, we must include, in the MPC problem, the 
following ingredients:
• Constraints:

• Collision avoidance constraints with respect to external
walls

• Fixed obstacle avoidance constraints
• If more vehicles are included, inter-robot collision

avoidance constraints
• Constraints for fulfilling operational limitations (e.g., 

maximum speed, etc) 
• Cost function: 

• For approaching the goal position
• To prevent deadlock solutions with fixed obstacles

• Proper terminal cost function and terminal constraints
for guaranteeing recursive feasibility.



Marcello Farina MPC control of unicycle robots 15

Goal

Collision avoidance constraints with respect to external walls

If the red area is polytopic and convex, we can write the 
corresponding constraint as follows:

𝐴𝑎𝑟𝑒𝑎𝑦(𝑘) ≤ 𝑏𝑎𝑟𝑒𝑎 𝐴𝑎𝑟𝑒𝑎𝐶𝑥(𝑘) ≤ 𝑏𝑎𝑟𝑒𝑎
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The problem is that, to avoid obstacles of this type, the «free 
area» is not convex, and so we cannot express the problem using
constraints of the type:

Goal

𝐴𝑐𝑜𝑙𝑙−𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒𝑦(𝑘) ≤ 𝑏𝑐𝑜𝑙𝑙−𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒

Collision avoidance constraints with respect to (fixed) obstacles
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Collision avoidance constraints with respect to (fixed) obstacles

Steps:

1. Assume that it is possible to circumscribe
each obstacle with a polytope with L sides
(better if L is large). The interior of the 
obstacle can be represented as

𝐴𝑜𝑏𝑠𝑡𝑦 ≤ 𝑏𝑜𝑏𝑠𝑡

2. Note that a collision-free point is such that at least one of the 
above L inequalities is violated, i.e., at least one of the 
elements of the vector 𝜌 = 𝐴𝑜𝑏𝑠𝑡𝑦 − 𝑏𝑜𝑏𝑠𝑡 is positive

L inequalities, all satisfied
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Collision avoidance constraints with respect to (fixed) obstacles

Example The interior of the square is
characterized by L=4 inequalities
(intersection of half planes)

1

1

-1

-1

x

y

𝑥 ≤ 1
−𝑥 ≤ 1

𝑦 ≤ 1
−𝑦 ≤ 1

1
−1

0
0

0
0

1
−1

𝑥
𝑦 ≤

1
1
1
1

Pick an external point, e.g., ( ҧ𝑥, ത𝑦)=(1.5,2). Which inequalities
are violated? The vector

𝜌 =

1
−1

0
0

0
0

1
−1

ҧ𝑥
ത𝑦
−

1
1
1
1

=

0.5
−2.5
1
−3

has two positive entries.

This is the «most
violated».
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Collision avoidance constraints with respect to (fixed) obstacles

3. In the MPC context, we can take advantage of the fact that, at
time t, the optimal collision-free trajectory computed at the 
previous time instant t-1 is available, i.e.,

𝑢 𝑡 − 1|𝑡 − 1 , 𝑢 𝑡|𝑡 − 1 ,… , 𝑢(𝑡 + 𝑁 − 2|𝑡 − 1)
𝑥 𝑡|𝑡 − 1 ,… , 𝑥(𝑡 + 𝑁 − 1|𝑡 − 1)
𝑦 𝑡|𝑡 − 1 ,… , 𝑦(𝑡 + 𝑁 − 1|𝑡 − 1)

Feasible inputs
States
Positions

𝑦 𝑡|𝑡 − 1

𝑦 𝑡 + 𝑁 − 1|𝑡 − 1 Since the trajectory is collision-free, 
for all k=t,…,t+N-1, at least one entry 
of the vector

𝜌 𝑘 𝑡 − 1 = 𝐴𝑜𝑏𝑠𝑡𝑦(𝑘|𝑡 − 1) − 𝑏𝑜𝑏𝑠𝑡

is positive.

We select the corresponding
constraint to be enforced (at time 
t) on y(k).
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Collision avoidance constraints with respect to (fixed) obstacles

𝑦 𝑘|𝑡 − 1
This convex set defines the 
constraint for y(k) in the 
optimization problem
solved at time t. 

Formally:
• We compute, for all k=t,…,t+N-1 the vector

• We select ҧ𝑖 such that the entry 𝜌 ҧ𝑖 𝑘 𝑡 − 1 ≥ 𝜌𝑖 𝑘 𝑡 − 1 , i=1,…,L.
• We impose only the constraint 𝐴𝑜𝑏𝑠𝑡, ҧ𝑖𝑦(𝑘) ≥ 𝑏𝑜𝑏𝑠𝑡, ҧ𝑖

𝜌 𝑘 𝑡 − 1 = 𝐴𝑜𝑏𝑠𝑡𝑦(𝑘|𝑡 − 1) − 𝑏𝑜𝑏𝑠𝑡
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Collision avoidance constraints with respect to (fixed) obstacles

agent obstacle

goal
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Inter-robot collision avoidance constraints

If two vehicles are present, we aim to generate collision-free 
trajectories. We exploit communication!

• Each agent is regarded, by the other agent, as a moving obstacle.
• The «most violated» constraint is selected (similarly to the 

previous case) based on the collision-free trajectory predicted at
the previous optimization step.

• Each agent is allowed to move towards the constraint half the 
distance, to avoid collision.
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Consider, for example, the feedback-linearized model 
obtained with the first approach, i.e.,

Operational limitations 

𝑥𝑈(𝑘 + 1)
𝑣𝑥(𝑘 + 1)
𝑦𝑈(𝑘 + 1)
𝑣𝑦(𝑘 + 1)

=

1
0
0
0

𝜏
1
0
0

0
0
1
0

0
0
𝜏
1

𝑥𝑈(𝑘)
𝑣𝑥(𝑘)
𝑦𝑈(𝑘)
𝑣𝑦(𝑘)

+

𝜏2/2
𝜏
0
0

0
0

𝜏2/2
𝜏

𝑎𝑥(𝑘)
𝑎𝑦(𝑘)

Velocities (in x and y
directions) are states

Accelerations (in x and y
directions) are inputs

Constraints on these
variables may be used to 
enforce constraints on the 
longitudinal speed v.

Constraints on these
variables may be used to 
enforce constraints on the 
longitudinal acceleration a.



Marcello Farina MPC control of unicycle robots 24

Operational limitations 

We want to enforce:
−𝑣𝑀 ≤ 𝑣 ≤ 𝑣𝑀

This can be done, for example, by imposing:

v

𝜃 𝑣𝑥

𝑣𝑦

−
𝑣𝑀

2
≤ 𝑣𝑥(𝑘) ≤

𝑣𝑀

2

−
𝑣𝑀

2
≤ 𝑣𝑦(𝑘) ≤

𝑣𝑀

2

0
0
0
0

1
−1
0
0

0
0
0
0

0
0
1
−1

𝑥(𝑘) ≤

1
1
1
1

𝑣𝑀

2
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Operational limitations 

We want to enforce:
−𝑎𝑀 ≤ 𝑎 ≤ 𝑎𝑀

This can be done, for example, by imposing:

a

𝜃 𝑎𝑥

𝑎𝑦

−
𝑎𝑀

2
≤ 𝑎𝑥(𝑘) ≤

𝑎𝑀

2

−
𝑎𝑀

2
≤ 𝑎𝑦(𝑘) ≤

𝑎𝑀

2

1
−1
0
0

0
0
1
−1

𝑢(𝑘) ≤

1
1
1
1

𝑎𝑀

2
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Cost function for approaching the goal position

• The goal position is ത𝑦𝐺 .

• The naive approach consists in minimizing, at time t, the 
following cost function:

𝐽 = ෍

𝑘=𝑡

𝑡+𝑁−1

𝑦 𝑘 − ത𝑦𝐺 𝑄
2 + 𝑢(𝑘) 𝑅

2 + 𝑥 𝑡 + 𝑁 − ҧ𝑥𝐺 𝑃
2

where
ҧ𝑥𝐺 =

ത𝑦𝐺,𝑥
0
ത𝑦𝐺,𝑦
0

(we aim to rest at the goal)
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Cost function for approaching the goal position

However, assume that, in N steps not all the trajectory
to the goal can be covered

Point that can be reached in N steps

In such case is more reasonable to define temporary goals
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Cost function for approaching the goal position

An alternative approach, indeed, consists in the tracking one:

= ෍

𝑘=𝑡

𝑡+𝑁−1

𝑦 𝑘 − 𝑦𝐺(𝑡) 𝑄
2 + 𝑢(𝑘) 𝑅

2

+ 𝑥 𝑡 + 𝑁 − 𝑥𝐺(𝑡) 𝑃
2 + 𝛾 𝑦𝐺 𝑡 − ത𝑦𝐺

2

𝐽

temporary goal (for the whole trajectory), additional
degree of freedom

Other approaches can be taken depending also on the 
specific problem at hand (parking, trajectory tracking, etc.)
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Cost function to prevent deadlock solutions with fixed 
obstacles 

So far collision avoidance is enforced just by using hard 
constraints.

Deadlock situations may occurr!

?

• Without additional terms, the 
cost function pushes the robot 
towards the bottleneck…

• An additional «force» is
necessary to circumnavigate 
the obstacle

• Temporary goals can be set 
using the theory of vortex
fields
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Cost function to prevent deadlock solutions with fixed 
obstacles 

Two words on vortex fields
• If obstacles «generate» repulsive 

fields local minima (i.e., 
bottlenecks) may occur

• Instead, if repulsive forces are 
«rotated», i.e., they are directed in 
tangent direction with respect to 
the obstacle, circumnavigation is
guaranteed.

A fictitious goal 𝑥𝑉𝐹(𝑡) is generated in the direction of 
the vector field and an additive term

𝑥 𝑘 − 𝑥𝑉𝐹(𝑡)
2

appears in the stage cost
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Terminal constraints

Assume again that, in N steps, not all the trajectory to 
the goal can be covered

Terminal point

Recursive fesibility can be compromized if this point
is not in a «safe region»
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Terminal constraints

In regulation problems, the «safe region» is a region is
characterized by the fact that, by using the auxiliary control law, 
we go towards the goal without colliding with obstacles or other
vehicles and without violating the operational constraints

That’s not possible in this case!
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Terminal constraints

To guarantee theoretical properties we may rely on the 
«tracking» approach, with terminal point.

This is cast as the linear equality terminal constraint:

Basically, we require that, after N steps, we may be able to stop 
at the intermediate goal, defined as the further degree of 
freedom for our MPC optimization problem.

𝑥 𝑡 + 𝑁 = 𝑥𝐺(𝑡)
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Goals and constraints - summary

Ingredients:
• Constraints:

• Collision avoidance constraints
with respect to external walls

• Fixed obstacle avoidance
constraints

• If more vehicles are included, 
inter-robot collision avoidance
constraints

• Constraints for fulfilling
operational limitations (e.g., 
maximum speed, etc) 

• Cost function: 
• For approaching the goal position
• To prevent deadlock solutions

with fixed obstacles
• Proper terminal cost function and 

terminal constraints for 
guaranteeing recursive feasibility.

Linear inequality (time 
invariant) constraint

Linear inequality (time-varying) 
constraint

Linear inequality (time-varying) 
constraint

Linear inequality (time 
invariant) constraint

Quadratic cost function

Quadratic additive terms

Linear equality constraint
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Some experimental results
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Some experimental results
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Some experimental results


