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«Deep Learning is not AI, nor Machine Learning»

Source: Michael Copeland, Deep Learnig Explained:

What it is, and how it can deliver business value to your organization

Neural Networks are as 

old as Artificial Intelligence
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The inception of AI
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Let’s go back to 1940s ...

Computers were already good at

• Doing precisely what the programmer 

programs them to do

• Doing arithmetic very fast

However, they would have liked them to:

• Interact with noisy data or directly

with the environment

• Be massively parallel and fault tolerant

• Adapt to circumstances

Researchers were seeking a computational model 

beyond the Von Neumann Machine!
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The Brain Computationa Model

The human brain has a huge number of computing units: 
• 1011 (one hundred billion) neurons

• 7,000 synaptic connections to other neurons

• In total from 1014 to 5 x 1014 (100 to 500 trillion) in adults
to 1015 synapses (1 quadrillion) in a three year old child

The computational model of the brain is:
• Distributed among simple non linear units

• Redundant and thus fault tolerant

• Intrinsically parallel

Perceptron: a computational model based on the brain!
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Computation in Biological Neurons
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Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

• Dendrites collect charges from synapses, both Inhibitory and Excitatory

• Cumulates charge is released (neuron fires) once a Threshold is passed

x1

xI

xi

… 

… 

1

ℎ𝑗 𝑥 w, b
𝑤𝑖

𝑤1

𝑤𝐼

𝑏 = −𝑤0

Σ -

ℎ𝑗 𝑥 w, b = hj Σ𝑖=1
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 − 𝑏 = hj Σ𝑖=0

𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = ℎ𝑗(𝑤𝑇𝑥)
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Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

• Dendrites collect charges from synapses, both Inhibitory and Excitatory

• Cumulates charge is released (neuron fires) once a Threshold is passed

ℎ𝑗 𝑥 w, b = hj Σ𝑖=1
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 − 𝑏 = hj Σ𝑖=0

𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = ℎ𝑗(𝑤𝑇𝑥)

x1

xI

xi

… 

… 

1

ℎ𝑗 𝑥 w
𝑤𝑖

𝑤1

𝑤𝐼
𝑤0
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Who did it first?

Several researchers were investigating models for the brain 

• In 1943, Warren McCullog and Walter Harry Pitts 

proposed the Treshold Logic Unit or Linear Unit, 

the activation function was a threshold unit 

equivalent to the Heaviside step function

• In 1957, Frank Rosemblatt developed the first 

Perceptron. Weights were encoded in potentiometers,

and weight updates during learning were performed 

by electric motors

• In 1960, Bernard Widrow introduced the idea of

representing the threshold value as a bias term

in the ADALINE (Adaptive Linear Neuron or later 

Adaptive Linear Element)
The Mark I Perceptron
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What can you do with it?

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

𝒙𝟎 𝒙𝟏 𝒙𝟐 AND

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

x1

xi

1

ℎ𝐴𝑁𝐷 𝑥 w

𝑤2 = 1

𝑤1 = 3/2

𝑤0 = −2

x1

xi

1

ℎ𝑂𝑅 𝑥 w

𝑤2 = 1

𝑤1 = 1

𝑤0 = −1/2

ℎ𝑂𝑅(𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2) =

= ℎ𝑂𝑅 −
1

2
+ 𝑥1 + 𝑥2 =

= ൞
1, 𝑖𝑓 −

1

2
+ 𝑥1 + 𝑥2 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ𝐴𝑁𝐷(𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2) =

= ℎ𝐴𝑁𝐷 −2 +
3

2
𝑥1 + 𝑥2 =

= ൞
1, 𝑖𝑓 −2 +

3

2
𝑥1 + 𝑥2 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron as 
Logical OR

Perceptron as 
Logical AND
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Hebbian Learning

“The strength of a synapse increases according to the simultaneous 

activation of the relative input and the desired target” 
(Donald Hebb, The Organization of Behavior, 1949)

Hebbian learning can be summarized by the following rule:

Where we have:

• 𝜂: learning rate

• 𝑥𝑖
𝑘: the 𝑖𝑡ℎ perceptron input at time 𝑘

• 𝑡𝑘 : the desired output at time 𝑘

𝑤𝑖
𝑘+1 = 𝑤𝑖

𝑘 + Δ𝑤𝑖
𝑘

Δ𝑤𝑖
𝑘 = 𝜂 ⋅ 𝑥𝑖

𝑘 ⋅ 𝑡𝑘

Fix the weights one sample 
at the time (online), and 
only if the sample is not 

correctly predicted

Start from a random 
initialization
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Perceptron Example

Learn the weights to implement the OR operator

• Start from random weights, e.g., 

𝑤 = [0 0 0]

• Chose a learning rate, e.g., 

𝜂 = 0.5

• Cycle through the records by

fixing those which are not correct

• End once all the records are correctly predicted

Does the procedure always converge? 

Does it always converge to the same sets of weights?

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 -1 -1 -1

1 -1 1 1

1 1 -1 1

1 1 1 1

x1

xi

1

𝑤2 = ?

𝑤1 = ?

𝑤0 = ?

ℎ 𝑤𝑇𝑥 = ൞

1 𝑖𝑓𝑤𝑇𝑥 > 0

0 𝑖𝑓𝑤𝑇𝑥 = 0

−1 𝑖𝑓𝑤𝑇𝑥 < 0

Life is easier 
with Sign(.)
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Perceptron Math

A perceptron computes a weighted sum, returns its Sign (Thresholding)

It is a linear classifier for which the decision boundary is the hyperplane

In 2D, this turns into

ℎ𝑗 𝑥 w = hj Σ𝑖=0
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = 𝑆𝑖𝑔𝑛 𝑤0 + 𝑤1 ⋅ 𝑥1 + ⋯ + 𝑤𝐼 ⋅ 𝑥𝐼

𝑤0 + 𝑤1 ⋅ 𝑥1 + ⋯ + 𝑤𝐼 ⋅ 𝑥𝐼 = 0

𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 = 0
𝑤2 ⋅ 𝑥2 = −𝑤0 − 𝑤1 ⋅ 𝑥1

𝑥2 = −
𝑤0

𝑤2
−

𝑤1

𝑤2
⋅ 𝑥1

𝑥1

𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2

With 0/1 input it is 
just a translation
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Boolean Operators are Linear Boundaries

Linear boundary explains how Perceptron implements Boolean operators

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 -1 -1 -1

1 -1 1 1

1 1 -1 1

1 1 1 1

What’s about it? We had 
already Boolean operators

𝑥1

𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2

𝒙𝟎 𝒙𝟏 𝒙𝟐 AND

1 -1 -1 -1

1 -1 1 -1

1 1 -1 -1

1 1 1 1

𝑥1
𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2

Yes! But this ia 
a single 

trainable HW!
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What can’t you do with it?

What if the dataset we want to learn does not have a linear separation boundary?

The Perceptron does not work any more and we need alternative solutions
• Non linear boundary

• Alternative input representations

𝒙𝟎 𝒙𝟏 𝒙𝟐 XOR

1 -1 -1 -1

1 -1 1 1

1 1 -1 1

1 1 1 -1

Marvin Minsky, Seymour Papert 
“Perceptrons: an introduction to 
computational geometry” 1969.

The idea behind Multi 
Layer Perceptrons

𝑥1

𝑥2
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What can’t you do with it?

What if the dataset we want to learn does not have a linear separation boundary?

The Perceptron does not work any more and we need alternative solutions
• Non linear boundary

• Alternative input representations

𝒙𝟎 𝒙𝟏 𝒙𝟐 XOR

1 -1 -1 -1

1 -1 1 1

1 1 -1 1

1 1 1 -1

Marvin Minsky, Seymour Papert 
“Perceptrons: an introduction to 
computational geometry” 1969.

The idea behind Multi 
Layer Perceptrons

𝑥1

𝑥2

Unfortunately Hebbian 
learning does not work 

any more …
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Feed Forward Neural Networks

x1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1

Input Layer
(I neurons)

Output Layer
(K neurons)

Hidden Layer 1
(J1 neurons)

Hidden Layer 2
(J2 neurons)

Hidden Layer 3
(J3 neurons)

Non-linear model characterized by the 
number of neurons, activation 

functions, and the values of weights.

Layers are connected

through weights  𝑊(𝑙) = 𝑤𝑗𝑖
(𝑙)

The output of a neuron depends 
only on the previous layers 

ℎ(𝑙) = ℎ𝑗
𝑙

(ℎ 𝑙−1 , 𝑊(𝑙))

Activation functions 
must be differentiable

to train it …
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Which Activation Function?

Linear activation function

𝑔 𝑎 = 𝑎

𝑔′ 𝑎 = 1

Sigmoid activation function

𝑔 𝑎 =
1

1 + exp(−𝑎)

𝑔′ 𝑎 = 𝑔(𝑎)(1 − 𝑔 𝑎 )

Tanh activation function

𝑔 𝑎 =
exp 𝑎 − exp(−𝑎)

exp(𝑎) + exp(−𝑎)

𝑔′ 𝑎 = 1 − 𝑔 𝑎 2
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Output Layer in Regression and Classification

In Regression the output spans the whole ℜ domain:
• Use a Linear activation function for the output neuron

In Classification with two classes, chose according to their coding:
• Two classes Ω0 = −1, Ω1 = +1 then use Tanh output activation

• Two classes Ω0 = 0, Ω1 = 1 then use Sigmoid output activation 
(it can be interpreted as class posterior probability)

When dealing with multiple classes (K) use as many neuron as classes
• Classes are coded as Ω0 = 0 0 1 , Ω1 = 0 1 0 , Ω2 = [1 0 0]

• Output neurons use a softmax unit  yk =
exp(𝑧𝑘)

σ𝑘 exp(𝑧𝑘)
=

exp σ𝑗 𝑤𝑘𝑗ℎ𝑗 σ𝑖
𝐼 𝑤𝑗𝑖⋅𝑥𝑖

σ𝑘=1
𝐾 exp σ𝑗 𝑤𝑘𝑗ℎ𝑗 σ𝑖

𝐼 𝑤𝑗𝑖⋅𝑥𝑖

«One hot» 
encoding

For all hidden
neurons use sigmoid

or tanh (see later)



20

Regardless the function we are learning, a single layer can represent it:

• Doesn’t mean a learning algorithm can find the necessary weights!

• In the worse case, an exponential number of hidden units may be required

• The layer may have to be unfeasibly large and may fail to learn and generalize

Classification requires just one extra layer … 

Images from Hugo Larochelle’s DL Summer School Tutorial 

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network 
with S shaped activation functions can approximate 
any measurable function to any desired degree of 

accuracy on a compact set ”

Universal approximation theorem
(Kurt Hornik, 1991)
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Optimization and Learning (Supervised learning)

Recall learning a parametric model 𝑦 𝑥𝑛 𝜃 in regression/classification

• Given a training set

• We want to find model parameters

such that for new data

• In case of a Neural Network this 

can be rewritten as

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐷 =< 𝑥1, 𝑡1 > ⋯ < 𝑥𝑁, 𝑡𝑁 >

𝑦 𝑥𝑛 𝜃 ∼ 𝑡𝑛

𝑔 𝑥𝑛 𝑤 ∼ 𝑡𝑛

For this you can minimize 

𝐸 = σ𝑛
𝑁 𝑡𝑛 − 𝑔 𝑥𝑛 𝑤

2
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Sum of Squared Errors

𝑔 𝑥𝑛 𝑤

𝑡𝑛

Linear model which minimizes 

𝐸 = σ𝑛
𝑁 𝑡𝑛 − 𝑔 𝑥𝑛 𝑤

2

𝑡𝑛 − 𝑔 𝑥𝑛 𝑤

With feedforwad neural
networks this is non linear
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Non Linear Optimization 101

To find the minimum of a generic function, we compute the partial 

derivatives of the function and set them to zero

Closed-form solutions are practically never available so we can use 

iterative solutions (gradient descent):

• Initialize the weights to a random value

• Iterate until convergence

𝜕𝐽(𝑤)

𝜕𝑤
= 0

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐽 𝑤

𝜕𝑤
𝑤𝑘
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𝑤

𝐸(𝑤)

Gradient descent - Backpropagation

Finding the weighs of a Neural Network is a non linear optimization

We iterate starting from an initial

random configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤) 2

𝑤0 𝑤1 𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

It depends on where 
we start from

Use multiple restarts to seek 
for a proper global minimum.
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x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

Gradient Descent Example

Compute the 𝑤𝑗𝑖
(1)

weight update formula by gradient descent

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

Use j=3 and i=5
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𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2𝑔1 𝑥𝑛|𝑤 = 𝑔1 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝐸(𝑤)

𝜕𝑤3,5
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 𝑔1
′ 𝑥𝑛, 𝑤 𝑤1,3

2
ℎ3

′ ෍

𝑖=0

𝐼

𝑤3,𝑖

(1)
⋅ 𝑥𝑖,𝑛 𝑥5,𝑛

𝜕𝐸(𝑤)

𝜕𝑤3,5
(1)

=
𝜕 σ𝑛=1

𝑁 𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝜕𝑤3,5
(1)

= ෍

𝑛=1

𝑁
𝜕 𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝜕𝑤3,5
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤
𝜕𝑔1 𝑥𝑛, 𝑤

𝜕𝑤3,5
(1)

𝜕𝑔1 𝑥𝑛, 𝑤

𝜕𝑤3,5
(1)

=
𝜕𝑔1 σ𝑗=0

𝐽
𝑤1𝑗

(2)
⋅ ℎ𝑗 .

𝜕𝑤3,5
(1)

= 𝑔1
′ 𝑥𝑛, 𝑤 ∙

𝜕 σ
𝑗=0
𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 .

𝜕𝑤3,5

(1)
= 𝑔1

′ 𝑥𝑛, 𝑤 ∙  𝑤1,3
(2)

∙
𝜕ℎ3 σ𝑖=0

𝐼 𝑤3𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝑤3,5

(1)

𝜕ℎ3 σ𝑖=0
𝐼 𝑤3𝑖

(1)
⋅ 𝑥𝑖,𝑛

𝜕𝑤3,5
(1)

= ℎ3
′ ෍

𝑖=0

𝐼

𝑤3,𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕 σ𝑖=0
𝐼 𝑤3,𝑖

(1)
⋅ 𝑥𝑖,𝑛

𝜕𝑤3,5
(1)

= ℎ3
′ ෍

𝑖=0

𝐼

𝑤3,𝑖
(1)

⋅ 𝑥𝑖,𝑛 𝑥5,𝑛
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Gradient Descent Example

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝐸(𝑤𝑗𝑖
(1)

)

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 𝑔1
′ 𝑥𝑛, 𝑤 𝑤1𝑗

2
ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 𝑥𝑖

Using all the data 
points (batch) might 

be unpractical
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Gradient Descent Variations

Batch gradient descent

Stochastic gradient descent (SGD)

Mini-batch gradient descent

𝜕𝐸(𝑤)

𝜕𝑤
=

1

𝑁
෍

𝑛

𝑁
𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

𝜕𝐸(𝑤)

𝜕𝑤
≈

𝜕𝐸𝑆𝐺𝐷(𝑤)

𝜕𝑤
=

𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

𝜕𝐸(𝑤)

𝜕𝑤
≈

𝜕𝐸𝑀𝐵 𝑤
𝜕𝑤

=
1

𝑀
෍

𝑛∈𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ

𝑀<𝑁
𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

Use a single sample, 
unbiased, but with 

high variance

Use a subset of 
samples, good trade off 
variance-computation
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Gradient Descent Example

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝐸(𝑤𝑗𝑖
(1)

)

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 𝑔1
′ 𝑥𝑛, 𝑤 𝑤1𝑗

2
ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 𝑥𝑖

Can I make it 
automatic?
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Backpropagation and Chain Rule (1)

Weights update can be done in parallel, locally, and requires just 2 passes

• Let x be a real number and two functions 𝑓: ℜ → ℜ and 𝑔: ℜ → ℜ

• Consider the composed function 𝑧 = 𝑓 𝑔 𝑥 = 𝑓 𝑦 where 𝑦 = 𝑔 𝑥

• The derivative of z w.r.t. 𝑥 can be computed applying the chain rule

The same holds for backpropagation

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑓′ 𝑦 𝑔′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′ 𝑥

𝜕𝐸(𝑤𝑗𝑖
(1)

)

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)
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Backpropagation and Chain Rule (2)

x1

xI

xi

… 

… 

𝑔 𝑥 w

𝑤𝑗𝑖
(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

Forward pass

𝜕𝐸(𝑤𝑗𝑖
(1)

)

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)
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Backpropagation and Chain Rule (2)

x1

xI

xi

… 

… 

𝑔 𝑥 w

𝑤𝑗𝑖
(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

Forward pass

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

Backward pass

𝜕𝐸(𝑤𝑗𝑖
(1)

)

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)
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Gradient Descent Example

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 𝑔1
′ 𝑥𝑛, 𝑤 𝑤1𝑗

2
ℎ𝑗

′ ෍

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 𝑥𝑖,𝑛

Why should I use this?
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A Note on Maximum Likelihood Estimation

Let’s observe i.i.d. samples from a Gaussian distribution with known 𝜎2

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

This point is very 
unlikely under the RED 

hypothesis

This point is very 
unlikely under the 
GREEN hypothesis

This hypothesis makes 
the most of the points 
likely to be observed
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A Note on Maximum Likelihood Estimation

Let’s observe i.i.d. samples from a Gaussian distribution with known 𝜎2

Maximum Likelihood: Chose parameters which maximize data probability

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

This hypothesis makes 
the most of the points 
likely to be observed
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Maximum Likelihood Estimation: The Recipe

Let 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑝
𝑇

a vector of parameters, find the MLE for 𝜃:

• Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃  for the data

• [Take the logarithm of likelihood l = log 𝑃 𝐷𝑎𝑡𝑎|𝜃 ]

• Work out 
𝜕𝐿

𝜕𝜃
 or 

𝜕𝑙

𝜕𝜃
using high-school calculus

• Solve the set of simultaneous equations 
𝜕𝐿

𝜕𝜃𝑖
= 0 or 

𝜕𝑙

𝜕𝜃𝑖
= 0

• Check that 𝜃𝑀𝐿𝐸 is a maximum

To maximize/minimize the (log)likelihood you can use:

• Analytical Techniques (i.e., solve the equations)

• Optimization Techniques (e.g., Lagrange multipliers)

• Numerical Techniques (e.g., gradient descend)

We know already about 
gradient descent, let’s try 

with some analitical stuff ...

Optional
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Maximum Likelihood Estimation Example

Let’s observe i.i.d. samples coming from a Gaussian with known 𝜎2

Find the Maximum Likelihood Estimator for 𝜇

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2
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Maximum Likelihood Estimation Example

Let’s observe i.i.d. samples coming from a Gaussian with known 𝜎2

• Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝐿 𝜇 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝑁|𝜇, 𝜎2 = ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜇, 𝜎2 =

= ෑ

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2𝜎2



39

Maximum Likelihood Estimation Example

Let’s observe i.i.d. samples coming from a Gaussian with known 𝜎2

• Take the logarithm 𝑙 = log 𝑃 𝐷𝑎𝑡𝑎|𝜃 of the likelihood

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝑙 𝜇 = log ෑ

𝑛=1

𝑁
1

2 ⋅ 𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2⋅𝜎2 = ෍

𝑛=1

𝑁

log
1

2 ⋅ 𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2⋅𝜎2 =

= 𝑁 ⋅ log
1

2 ⋅ 𝜋𝜎
−

1

2 ⋅ 𝜎2
෍

𝑛

𝑁

𝑥𝑛 − 𝜇 2
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Maximum Likelihood Estimation Example

Let’s observe i.i.d. samples coming from a Gaussian with known 𝜎2

• Work out 𝜕𝑙/𝜕𝜃 using high-school calculus

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝜕𝑙 𝜇

𝜕𝜇
=

𝜕

𝜕𝜇
𝑁 ⋅ log

1

2𝜋𝜎
−

1

2𝜎2
෍

𝑛

𝑁

𝑥𝑛 − 𝜇 2 =

= −
1

2𝜎2

𝜕

𝜕𝜇
෍

𝑛

𝑁

𝑥𝑛 − 𝜇 2 =
1

2𝜎2
෍

𝑛

𝑁

2 𝑥𝑛 − 𝜇
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Maximum Likelihood Estimation Example

Let’s observe i.i.d. samples coming from a Gaussian with known 𝜎2

• Solve the set of simultaneous equations 
𝜕𝑙

𝜕𝜃𝑖
= 0

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

1

2𝜎2
෍

𝑛

𝑁

2 𝑥𝑛 − 𝜇 = 0

෍

𝑛

𝑁

𝑥𝑛 − 𝜇 = 0

෍

𝑛

𝑁

𝑥𝑛 = ෍

𝑛

𝑁

𝜇

Let’s apply this all to
Neural Networks!

𝜇𝑀𝐿𝐸 =
1

𝑁
෍

𝑛

𝑁

𝑥𝑛
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Neural Networks for Regression

Goal: approximate a target function 𝑡 having N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑡𝑛 = 𝑔 𝑥𝑛|𝑤 + 𝜖𝑛, 𝜖𝑛 ∼ 𝑁 0, 𝜎2
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Statistical Learnig Framework

𝑔 𝑥𝑛 𝑤

𝑡𝑛

𝜖𝑛
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Neural Networks for Regression

Goal: approximate a target function 𝑡 having N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑡𝑛 = 𝑔 𝑥𝑛|𝑤 + 𝜖𝑛, 𝜖𝑛 ∼ 𝑁 0, 𝜎2 𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known 𝜎2

Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 , 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑡−𝑔 𝑥|𝑤

2

2𝜎2

𝐿 𝑤 = 𝑝 𝑡1, 𝑡2, … , 𝑡𝑁|𝑔 𝑥|𝑤 , 𝜎2 = ෑ

𝑛=1

𝑁

𝑝 𝑡𝑛|𝑔 𝑥𝑛|𝑤 , 𝜎2 =

= ෑ

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2

𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known 𝜎2

Write the loglikelihood l = log 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 , 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑡−𝑔 𝑥|𝑤

2

2𝜎2

𝑙 𝑤 = 𝑙𝑜𝑔 ෑ

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2 = ෍

𝑛

𝑁

log
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2

= ෍

𝑛

𝑁

log
1

2𝜋𝜎
−

1

2𝜎2
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2

𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2



47

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known 𝜎2

Look for the weights which maximixe the loglikelihood

𝑝 𝑡|𝑔 𝑥|𝑤 , 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑡−𝑔 𝑥|𝑤

2

2𝜎2

𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑙 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 ෍

𝑛

𝑁

log
1

2𝜋𝜎
−

1

2𝜎2
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2
=

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ෍

𝑛

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Neural Networks for Classification

Goal: approximate a posterior probability 𝑡 having N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔 ෍

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗 ෍

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑔 𝑥𝑛|𝑤 = 𝑝 𝑡𝑛|𝑥𝑛 , 𝑡𝑛 ∈ 0, 1 𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤
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Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 = 𝑔 𝑥|𝑤 𝑡 ⋅ 1 − 𝑔 𝑥|𝑤
1−𝑡

𝐿 𝑤 = 𝑝 𝑡1, 𝑡2, … , 𝑡𝑁|𝑔 𝑥|𝑤 = ෑ

𝑛=1

𝑁

𝑝 𝑡𝑛|𝑔 𝑥𝑛|𝑤 =

= ෑ

𝑛=1

𝑁

𝑔 𝑥𝑛|𝑤 𝑡𝑛 ⋅ 1 − 𝑔 𝑥𝑛|𝑤
1−𝑡𝑛

𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤
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Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

Compute the log likelihood 𝑙 = 𝑙𝑜𝑔𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 = 𝑔 𝑥|𝑤 𝑡 ⋅ 1 − 𝑔 𝑥|𝑤
1−𝑡

𝑙 𝑤 = log ෑ

𝑛=1

𝑁

𝑔 𝑥𝑛|𝑤 𝑡𝑛 ⋅ 1 − 𝑔 𝑥𝑛|𝑤
1−𝑡𝑛

= ෍

𝑛

𝑁

𝑡𝑛 log 𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 log(1 − 𝑔 𝑥𝑛|𝑤 )

𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤
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Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

Look for the weights which maximize the loglikelihood

𝑝 𝑡|𝑔 𝑥|𝑤 = 𝑔 𝑥|𝑤 𝑡 ⋅ 1 − 𝑔 𝑥|𝑤
1−𝑡

𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑙 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 ෍

𝑛

𝑁

𝑡𝑛 log 𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 log(1 − 𝑔 𝑥𝑛|𝑤 )

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 − ෍

𝑛

𝑁

𝑡𝑛 log 𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 log(1 − 𝑔 𝑥𝑛|𝑤 )

𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤

Crossentropy
− σ𝑛

𝑁 𝑡𝑛
𝑇 log 𝑔 𝑥𝑛|𝑤

What about perceptron 
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How to Chose the Error Function?

We have observed different error functions so far

Error functions define the task to be solved, but how to design them?

• Use all your knowledge/assumptions about the data distribution

• Exploit background knowledge on the task and the model

• Use your creativity!
This requires lots of 

trial and errors ...

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

Sum of Squared 
Errors

As for the Perceptron ...

𝐸(𝑤) = − ෍

𝑛

𝑁

𝑡𝑛 𝑙𝑜𝑔 𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 𝑙𝑜𝑔(1 − 𝑔 𝑥𝑛|𝑤 )

Binary 
Crossentropy
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Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) 𝐿 ∈ ℜ2

Any two points x1 and x2 on 𝐿 ∈ ℜ2 have

The versor normal to 𝐿 ∈ ℜ2 is then

For any point x0 in 𝐿 ∈ ℜ2 we have

The signed distance of any point x from 𝐿 ∈ ℜ2 is defined by

𝑥1

𝑤0 + 𝑤𝑇x = 0

𝑥2

x

x0

𝑤∗

𝐿: 𝑤0 + 𝑤𝑇x = 0

𝑤𝑇(x1 − x2) = 0

𝑤∗ = 𝑤/‖𝑤‖

𝑤∗𝑇 x − x0 =
1

𝑤
(𝑤𝑇x + 𝑤0)

𝑤𝑇x0 = −𝑤0

(𝑤𝑇x + 𝑤0) is proportional to 
the distance of x from the plane 

defined by 𝑤𝑇x + 𝑤0 = 0
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It can be shown, the error function the Hebbian rule is minimizing is the 

distance of misclassified points from the decision boundary. 

Let’s code the perceptron output as +1/-1

• If an output which should be +1 is misclassified then wTx + w0 < 0

• For an output with -1 we have the opposite

The goal becomes minimizing

𝐷 𝑤, 𝑤0 = − ෍

𝑖∈M

𝑡𝑖(wTxi + w0)

This is non negative and proportional to the distance of the misclassified 

points from 

Set of points 

misclassified

Perceptron Learning Algorithm (1/2)

wTx + w0 = 0
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Let’s minimize by stochastic gradient descend the error function

The gradients with respect to the model parameters are

Stochastic gradient descent applies for each misclassified point

Perceptron Learning Algorithm (2/2)

𝐷 𝑤, 𝑤0 = − ෍

𝑖∈M

𝑡𝑖(wTxi + w0)

𝜕𝐷 𝑤, 𝑤0

𝜕𝑤
= − ෍

𝑖∈M

𝑡𝑖 ⋅ xi

𝜕𝐷 𝑤, 𝑤0

𝜕𝑤0
= − ෍

𝑖∈M

𝑡𝑖

𝑤𝑘+1

𝑤0
𝑘+1 =

𝑤𝑘

𝑤0
𝑘 + 𝜂

𝑡𝑖 ⋅ 𝑥𝑖

𝑡𝑖
=

𝑤𝑘

𝑤0
𝑘 + 𝜂

𝑡𝑖 ⋅ 𝑥𝑖

𝑡𝑖 ⋅ 𝑥0
Hebbian learning 

implements Stocastic 
Gradient Descent
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