

Cognitive Robotics 2018/2019

Convolutional Neural Networks

Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Neural Networks for Image Recognition

Feed Forward Networks Drawbacks

Feed Forward Networks Drawbacks

Feed Forward Networks Drawbacks

Spatial Convolutions

A spatial convolution implement a spatial filtering

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

Different filters (weights) reveal a different characteristics of the input

Spatial Convolutions

A spatial convolution implement a spatial filtering

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

Different filters (weights) reveal a different characteristics of the input

Spatial Convolutions

A spatial convolution implement a spatial filtering

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

Different filters (weights) reveal a different characteristics of the input

Discrete Convolutions

The convolution layer performs the following

- A Kernel (shaded area) slides over input feature map (blue)
- Elementwise products computed between the kernel and the overlapped input
- Result is summed up and constitute the output feature map (cyan)

Well know tool in image processing

Deep Convolutional Neural Networks for Image Recognition

Dealing with multiple maps

1 input map 1 3x3 kernel 1 output map

Dealing with multiple maps

1 input map

2 3x3 kernels 2 output maps

Convolutions details: Padding

Input map: 5x5

Output map: 3x3

Convolutions details: Padding

Input map: 5x5

Output map: 3x3

Convolutions details: Padding

You can have same size onvolutions by zero padding:

Input map: 5x5

Output map: 5x5

CNN Topology

Feature maps Feature extraction layer Convolution layer S Shift and distortion invariance or Subsampling layer (Pooling)

Convolutional Layer

Why Convolutional Layers?

Sparse connectivity + Parameter Sharing

3x1 conv = 3 weights (+ 1 bias)

Why Convolutional Layers?

Sparse connectivity + Parameter Sharing + Translational Invariance

3x1 conv = 3 weights

(+ 1 bias)

Receptive fields

Deeper networks depend on wider patches of the input

3x1+3x1 = 6 weights

(+ 2 biases)

Fully Connected 5x5 = 25 weights (+ 5 biases) 3x1 + 3x1 Convolutional

POLITECNICO MILANO 1863

Pooling Layer

Shift and distortion invariance or Subsampling layer (Pooling)

LeNet (LeCun, 1998)

LeNet-5

LeNet Invariance

Why Convolutional Networks Work?

Convolutional neural networks learn a hierarchy of translation invariant features

Tensors and 3D Convolutions

Slide credit: Andrea Vedaldi

Deep CNN for image recognition

POLITECNICO MILANO 1863

IM GENET

1000 classes, 1.5 Million labeled images (2012)

And the winner is ...

E

2

Krizhevsky, Sutskever, Hinton (2012)

Large convolutional net

- 650K neurons, 832M synapses, 60M parameters
- Trained with backpropagation on GPU
- Trained «with all the tricks Yann came up with in the last 20 years, plus dropout» (Hinton NIPS'10)
- Image preprocessing: contrast normalization, rectification, etc.

້ອ Error rate: 15% (whenever the correct class isn't in top 5) Previous state of the art: 25% error

A revolution in Computer Vision

- Acquired by Google in Jan 2013
- Deployed in Google+ Photo Tagging in May 2013

Zeiler and Fergus (2013)

Convolutional network

- 8 layers, input 224x224 pixels
- Conv pool conv pool conv conv – conv – full – full – full
- Rectified-linear Units (ReLU)
- Divisive contrast normalization across features [Jarret et al. 2009]
- Trained on ImageNet 2012 training set
 - 1.3M images, 1000 classes
 - 10 different crops/flips per image

Stochastic gradient descent

- 70 epochs (7-10 days)
- Learning rate anealing
- Regularization with dropout

Clarifai	11.7%	Deep CNN				
NUS	13.0%	SVM based + Deep CNN				
ZF	13.5%	Deep CNN				
ndrew Howard	13.6%	Deep CNN				
OverFeat-NYU	14.1%	Deep CNN				
UvA-Euvison	14.2%	Deep CNN				
*•••						
Human level performance!!!						

Supervision (ImageNet - 2012)

	koala	tiger E	European fire salamande	r loggerhead
	wombat	tiger	European fire salamander	African crocodile
	Norwegian elkhound	tiger cat	spotted salamander	Gila monster
	wild boar	Jaguar	common newt	loggerhead
	wallaby	lynx	long-norned beetle	mud turtle
AND AND AND	koala	leopard	box turtle	leatherback turtle
		tolevision		
	seat beit	Leievision		wallaby
→	seat belt	television	sinding door	nare
1000	botdog	microwave	window shada	wood rabbit
	hurrito	screen	window shade	Lakeland terrior
	Band Aid	car mirror	four-poster	kit for
	Daliu Alu	car minior	iour poster	KIL IOX

Feature Learning in Convolutional Networks

POLITECNICO MILANO 1863

Transfer Learning

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000

Features are generic

Can we reuse the low level processing from CNN?

- Network trained on ImageNet first
- Last layer chopped off
- Last layer trained on Caltech 256 keeping previous layers fixed
- State of the art accuracy with only 6 samples/class

VGG + ReSeg Architecture

Francesco Visin, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun Cho, Yoshua Bengio, Matteo Matteucci, Aaron Courville ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation. CVPR Workshops 2016

Results on Cityscape

19 semantic classes, 3275 training images, 500, validation, 1525 test images (2048 × 1024 resolution)

Results on CamVid

11 semantic classes, 367 training images, 101 validation, 233 test images (480 × 360 resolution)

«On every street»

LeNet (1998)

2 convolutional layers2 fully connected layers

POLITECNICO MILANO 1863

LeNet (1998)

- 2 convolutional layers
- 2 fully connected layers

AlexNet (2012)

5 convolutional layers 3 fully connected layers

LeNet (1998) AlexNet (2012) VGGNet-M (2013) ᆁᅶᆆᅸᅸᆓᄱᇗᇾᆈᇗᄱᇉᇗᄱᇉᇗᄱᇗᇧᇃᅕᇗᄱᇔᇎᆆᇾᇗᇔᇴᆆᇾᅷᆆᇔᇗᇵᆄᇕᇔᇾᆆᇪᇔᇨᆎᇔᅭᅭᆘᆑᅭᅭᇉᅶᅋᅤᇍᅭᇉᆠᇧᅸ

LeNet (1998)	AlexNet (2012)	VGGNet-M (2013)	GoogLeNet (2014)
	· · · · · · · · · · · · · · · · · · ·		

