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Neural Networks for Image Recognition

Prior Art
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Too hard to train!
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noise!
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Feed Forward Networks Drawbacks

FFNN have little, if any, invariance to shifting, scaling, and other forms of distortion
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Feed Forward Networks Drawbacks

FFNN have little, if any, invariance to shifting, scaling, and other forms of distortion

Almost 150 input 
change from just a 

2px shift left
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Feed Forward Networks Drawbacks
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Too sensitive to 
noise!

State of the Art in Image Recognition

Prior Art

Layer of Perceptrons

Image

Layer of Perceptrons

Layer of Perceptrons

Too hard to train!



9

State of the Art in Image Recognition

Previous State of Art
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State of the Art in Image Recognition

Previous State of Art
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Fully connected
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Fully connected

Prior Art

Layer of Perceptrons

Image

Layer of Perceptrons

Layer of Perceptrons

Local connections with 
weight sharing + pooling for 

translation invariance
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Spatial Convolutions

A spatial convolution implement a spatial filtering

Different filters (weights) reveal a different characteristics of the input

𝑎

𝑏 𝑎 ∗ 𝑏
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Discrete Convolutions

The convolution layer performs the following

• A Kernel (shaded area) slides over input 

feature map (blue)

• Elementwise products computed between

the kernel and  the overlapped input

• Result is summed up and constitute the 

output feature map (cyan)

Well know tool in image processing 
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Deep Convolutional Neural Networks for Image Recognition

Image

Pooling

Convolution

Convolution/pooling
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Image
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Fully connected

Fully connected

Fully connected

Local connections with 
weight sharing + pooling for 

translation invariance
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Dealing with multiple maps
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Dealing with multiple maps
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Convolutions details: Padding

Input map: 5x5                                   Output map: 3x3
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Convolutions details: Padding
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Convolutions details: Padding

You can have same size onvolutions by zero padding:

Input map: 5x5                                   Output map: 5x5
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CNN Topology

Feature extraction layer
Convolution layer

Shift and distortion invariance or
Subsampling layer (Pooling)

C

S

Feature maps
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Convolutional Layer

Feature extraction layer
Convolution layer

10-1

10-1

10-1

Convolve
with Threshold

features



26

Why Convolutional Layers?

Sparse connectivity + Parameter Sharing

Fully Connected                                              3x1 Convolutional

5x5 = 25 weights
(+ 5 biases)

3x1 conv = 3 weights 
(+ 1 bias)
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Why Convolutional Layers?

Sparse connectivity + Parameter Sharing + Translational Invariance

Fully Connected                                              3x1 Convolutional

5x5 = 25 weights
(+ 5 biases)

3x1 conv = 3 weights 
(+ 1 bias)
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Deeper networks depend on wider patches of the input

Fully Connected                                       3x1 + 3x1 Convolutional

Receptive fields

5x5 = 25 weights
(+ 5 biases)

3x1+3x1 = 6 weights
(+ 2 biases)
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Pooling Layer

Shift and distortion invariance or
Subsampling layer (Pooling)
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LeNet (LeCun, 1998)
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LeNet-5

[Courtesy of Yan LeCun]
Layer 1

Layer 3

Layer 5 Input

Output
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LeNet Invariance
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Why Convolutional Networks Work?

Convolutional neural networks learn a hierarchy of translation invariant features

Rotation invariance can 
be obtained by data 

augmentation …
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Tensors and 3D Convolutions
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Convolutional Neural Networks in a Nutshell

32 x 32 x 3 image

5 x 5 x 3 filter

Input and filters always 
match the number of 

channels

Sometimes we interchange the 
terms “filter” and “kernel” to refer 

to the weights of the local 
connections
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Convolutional Neural Networks in a Nutshell

37

5 x 5 x 3 filter

28

28

1
32 x 32 x 3 image
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Convolutional Neural Networks in a Nutshell
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5 x 5 x 3 filter

28

28

1
32 x 32 x 3 image Each color corresponds 

to a different filter
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Convolutional Neural Networks in a Nutshell

40

5 x 5 x 3 filter

28

28

1

… 

E.g. 

256 feature 

maps

32 x 32 x 3 image
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Convolutional Neural Networks in a Nutshell

41

ReLU ReLU

32 x 32 x 3 32 x 32 x 128 32 x 32 x 256
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Convolutional Neural Networks in a Nutshell

42

ReLU

32 x 32 x 3 32 x 32 x 128

16 x 16 x 128

MaxPool

128 filters 5x5x3 = 128 x (25 x 3+1) 
= 9984 parameters

Fully connected = 32x32x3x128 
= 393216 paameters
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LeCun et al. 1998

SuperVision, 2012

Deep CNN for image recognition

Output

90% parameters
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1000 classes, 1.5 Million 
labeled images (2012)
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And the winner is ...

0

5

10

15

20

25

30

35

40

Er
ro

r



46

Krizhevsky, Sutskever, Hinton (2012)

Large convolutional net

• 650K neurons, 832M synapses, 60M parameters

• Trained with backpropagation on GPU

• Trained «with all the tricks Yann came up with in
the last 20 years, plus dropout» (Hinton NIPS’10)

• Image preprocessing: contrast normalization, 
rectification, etc.

Error rate: 15% (whenever the correct class isn’t in top 5)

Previous state of the art: 25% error

A revolution in Computer Vision

• Acquired by Google in Jan 2013

• Deployed in Google+ Photo Tagging in May 2013
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Zeiler and Fergus (2013)

Convolutional network 

• 8 layers, input 224x224 pixels

• Conv – pool – conv – pool – conv 
conv – conv – full – full – full

• Rectified-linear Units (ReLU)

• Divisive contrast normalization
across features [Jarret et al. 2009]

Trained on ImageNet 2012 training set

• 1.3M images, 1000 classes

• 10 different crops/flips per image

Stochastic gradient descent

• 70 epochs (7-10 days)

• Learning rate anealing

• Regularization with dropout
Human level performance!!!
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Supervision (ImageNet - 2012)
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Feature Learning in Convolutional Networks

Are these features 
transferable between 

tasks/datasets?
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Transfer Learning
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Features are generic

Can we reuse the low level processing from CNN?

• Network trained on ImageNet first

• Last layer chopped off

• Last layer trained on Caltech 256 

keeping previous layers fixed

• State of the art accuracy 

with only 6 samples/class
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VGG + ReSeg Architecture

Francesco Visin, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun Cho, Yoshua Bengio, Matteo Matteucci, Aaron Courville
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation. CVPR Workshops 2016
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Results on Cityscape

19 semantic classes, 3275 training images, 500, validation, 1525 test images (2048 × 1024 resolution)
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Results on CamVid

11 semantic classes, 367 training images, 101 validation, 233 test images (480 × 360 resolution)
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«On every street»
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Revolution of Depth
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How Deep is Enough?
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