
ROS INTRODUCTION
ROBOTICS

ROS: ROBOT OPERATING SYSTEM

ROS main features:

Distributed framework

Reuse code

Language independent

Easy testing on Real Robot & Simulation

Scaling

ROS Components

Filesystem tools

Building tools

Packages

Monitoring and GUIs

Data Logging

OVERVIEW ON ROS ARCHITECTURE

Nodes: executables that uses ROS middleware to communicate with other nodes, they are processes

and communication happens by publish/subscribe

Messages: data type for the Topics

Packages: main container of any element of the ROS architecture, may contain a collection of nodes

and/or messages

Topics: nodes can publish messages to a topic or subscribe to a topic to receive messages; a topic is a

typed communication channel

Master: Name service for ROS

rosout: standard output and standard error for ROS

roscore: Master + rosout + parameter server

FILESYSTEM TOOLS

Change directory in the ROS filesystem

roscd [locationname[/subdir]]

Examples:

roscd roscpp && pwd /opt/ros/indigo/share/roscpp

roscd roscpp/srv /opt/ros/indigo/share/roscpp/srv

roscd robby_roboto ~/catkin_ws/src/robby_roboto

FILESYSTEM TOOLS

Getting information about installed packages

rospack <subcommand> [options] [package]

Allowed subcommands (among the others)

help [subcommand] help menu

depends [package] package dependencies

find [package] find package directory

list list available packages

Examples:

rospack find roscpp /opt/ros/indigo/share/roscpp

rospack list <several packages>

PACKAGE CREATION

Command to create a new package

catkin_create_pkg [package_name] [depend1] [depend2] [depend3]

Example

catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

Important Notes

Since Groovy catkin has become the default building tool

roscpp and rospy are client libraries to use C++ and Python

Before being able to do that you should have creates a ros_workspace

ROS CORE

The ROS core is a set of the only three programs that are necessary for

the ROS runtime:

ROS Master:

A centralized XML-RPC server

Negotiates communication connections

Registers and looks up names for ROS graph resources

Parameter Server: stores persistent configuration parameters and other arbitrary

data

rosout: network-based stdout for human-readable messages

STARTING THE ROS MIDDLEWARE

To start the ROS middleware just type in a terminal

roscore

Now it is possible to display information about the nodes currently running

rosnode list

Retrieve information about a specific node

rosnode info /rosout

ROS NODES

The basic elements of a ROS architecture are nodes

Nodes use a client library to communicate with other nodes

Nodes can publish/subscribe to a Topic

Nodes can use or host a Service

Nodes are implemented using client libraries

rospy: Python library

roscpp: C++ library

rosjava: java library (for android)

The rosnode command can be used to get information about nodes

DEALING WITH NODES

Getting information about running nodes

rosnode <command>

Allowed commands (among the others)

rosnode ping test connectivity to node

rosnode info print information about node

rosnode kill kill a running node

rosnode cleanup purge registration information of unreachable nodes

Examples:

rosnode list

rosnode info /rosout

ROS “GRAPH” ABSTRACTION

• Nodes: represent processes

distributed across the ROS network. A

ROS node is a source and sink for

data that is sent over ROS network.

• Parameters: Persistent (while the core

is running) data such as configuration

and initialization settings, stored on

the parameter server.

• ROS Topics

• Asynchronous “stream-like” communication

• TCP/IP or UDP Transport

• Strongly-typed (ROS .msg spec)

• Can have one or more publishers /

subscribers

• ROS Services

• Synchronous “function-call-like”

communication

• TCP/IP or UDP Transport

• Strongly-typed (ROS .srv spec)

• Can have only one server, but several

clients

STARTING ROS NODES

To start a ROS node type in a terminal

rosrun [package_name] [node_name]

Examples:

rosrun turtlesim turtlesim_node

rosnode ping turtlesim

rosnode info turtlesim

/turtlesim /rosout
/rosout/cmd_vel

STARTING ROS NODES

In a new terminal

rosrun turtlesim turtle_teleop_key

Notes:

turtle_teleop_key is publishing the key strokes on a topic

turtlesim subscribes to the same topic to receive the key strokes

/turtlesim /rosout
/rosout/cmd_vel

DEALING WITH TOPICS

To show the running node type in a terminal

rosrun rqt_graph rqt_graph

To plot published data on a topic

rosrun rqt_plot rqt_plot /turtle1/pose/x /turtle1/pose/y

rosrun rqt_plot rqt_plot /turtle1/pose/x:y

To monitor a topic on a terminal type

rostopic echo /turtle1/cmd_vel

DEALING WITH TOPICS CONT.

Getting information about ROS topics

rostopic <command> [options]

Allowed commands (among the others)

rostopic bw display bandwidth used by topic

rostopic echo print messages to screen

rostopic find find topics by type

rostopic hz display publishing rate of topic

rostopic info print information about active topic

rostopic list list active topics

rostopic pub publish data to topic

rostopic type print topic type

DEALING WITH TOPICS CONT.

Getting information about ROS topics

rostopic type [message]

Examples:

rostopic type /turtle1/cmd_vel

rosmsg show turtlesim/Pose

Publishing ROS topics

rostopic pub [topic] [msg type] [args]

Example:

rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist '{linear: {x: 0.1, y:

0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}'

