

Artificial Neural Networks and Deep Learning - Recurrent Neural Networks-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it) Artificial Intelligence and Robotics Laboratory Politecnico di Milano

Sequence Modeling

So far we have considered only «static» datasets

Sequence Modeling

So far we have considered only «static» datasets

Sequence Modeling

Different ways to deal with «dynamic» data:

Memoryless models:

- Autoregressive models
- Feedforward neural networks

Models with memory:

- Linear dynamical systems
- Hidden Markov models
- Recurrent Neural Networks

. . .

Memoryless Models for Sequences

Autoregressive models

 Predict the next input from previous ones using «delay taps»

Feed forward neural networks

• Generalize autoregressive models using non linear hidden layers

Dynamical Systems

Stochastic systems ...

Generative models with a real-valued hidden state which cannot be observed directly

- The hidden state has some dynamics possibly affected by noise and produces the output
- To compute the output has to infer hidden state
- Input are treated as driving inputs

In linear dynamical systems this becomes:

- State continuous with Gaussian uncertainty
- Transformations are assumed to be linear
- State can be estimated using *Kalman filtering*

Dynamical Systems

Stochastic systems ...

Generative models with a real-valued hidden state which cannot be observed directly

- The hidden state has some dynamics possibly affected by noise and produces the output
- To compute the output has to infer hidden state
- Input are treated as driving inputs

In hidden Markov models this becomes:

- State assumed to be discrete, state transitions are stochastic (transition matrix)
- Output is a stochastic function of hidden states
- State can be estimated via Viterbi algorithm.

time

Recurrent Neural networks

Memory via recurrent connections:

- Distributed hidden state allows to store a information efficiently
- Non-linear dynamics allows complex hidden state updates

"With enough neurons and time, RNNs can compute anything that can be computed by a computer."

> (Computation Beyond the Turing Limit Hava T. Siegelmann, 1995)

Recurrent Neural networks

Memory via recurrent connections:

- Distributed hidden state allows to store a information efficiently
- Non-linear dynamics allows complex hidden state updates

$$g^{t}(x_{n}|w) = g\left(\sum_{j=0}^{J} w_{1j}^{(2)} \cdot h_{j}^{t}(\cdot) + \sum_{b=0}^{B} v_{1b}^{(2)} \cdot c_{b}^{t}(\cdot)\right)$$
$$h_{j}^{t}(\cdot) = h_{j}^{t}\left(\sum_{j=0}^{J} w_{ji}^{(1)} \cdot x_{i,n} + \sum_{b=0}^{B} v_{jb}^{(1)} \cdot c_{b}^{t-1}\right)$$
$$c_{b}^{t}(\cdot) = c_{b}^{t}\left(\sum_{j=0}^{J} v_{bi}^{(1)} \cdot x_{i,n} + \sum_{b'=0}^{B} v_{bb'}^{(1)} \cdot c_{b'}^{t-1}\right)$$

Backpropagation Through Time

Backpropagation Through Time

Backpropagation Through Time

- Perform network unroll for U steps
- Initialize V, V_B replicas to be the same
- Compute gradients and update replicas with the average of their gradients

 V_B^{t-2}

 V_B^{t-3}

 $g^t(x|w)$

 $h_i^t(x, W^{(1)}, V^{(1)})$

 $c_1^t\left(x, W_B^{(1)}, V_B^{(1)}\right)$

 $c_B^t\left(x, \mathsf{W}_B^{(1)}, \mathsf{V}_B^{(1)}\right)$

• • •

1

 W_{11}

W_{ii}

 V_B^t

 X_1

X_i

 X_l

 V_B^{t-1}

How much should we go back in time?

Sometime output might be related to x_1 some input happened quite long before ...

Jane walked into the room. John walked in too. It was late in the day. Jane said hi to <???>

However backpropagation through time was not able to train recurrent neural networks significantly back in time ...

Was due to not being able to backprop through many layers ...

 w_{11}

 X_i

 X_{I}

 c_1^{t-1}

W_{ji}

 $\blacktriangleright g^t(x|w)$

 $h_i^t(x, W^{(1)}, V^{(1)})$

 $c_1^t\left(x, W_B^{(1)}, V_B^{(1)}\right)$

 $c_B^t\left(x, \mathsf{W}_B^{(1)}, \mathsf{V}_B^{(1)}\right)$

How much can we go back in time?

To better understand why it was not working consider a simplified case:

 $x + y^{t} = g(v^{(1)}h^{t-1} + w^{(1)}x) + y^{t} = w^{(2)}g(h^{t})$

Backpropagation over an entire sequence is computed as

 $\left\|\frac{\partial h_i}{\partial h_{i-1}}\right\| = \left\|v^{(1)}\right\| \left\|g'(h^{i-1})\right\| \implies \left\|\frac{\partial h^t}{\partial h^k}\right\| \le \left(\gamma_v \cdot \gamma_{g'}\right)^{t-k}$

$$\frac{\partial E}{\partial w} = \sum_{t=1}^{s} \underbrace{\frac{\partial E^{t}}{\partial w}}_{t=1} \implies \frac{\partial E^{t}}{\partial w} = \sum_{t=1}^{t} \frac{\partial E^{t}}{\partial y^{t}} \underbrace{\frac{\partial y^{t}}{\partial h^{k}}}_{\partial h^{k}} \underbrace{\frac{\partial h^{k}}{\partial w}}_{\partial w} \implies \frac{\partial h^{t}}{\partial h^{k}} = \prod_{i=k+1}^{t} \frac{\partial h_{i}}{\partial h_{i-1}} = \prod_{i=k+1}^{t} v^{(1)}g'(h^{i-1})$$

If we consider the norm of these terms

If $(\gamma_v \gamma'_g) < 1$ this converges to 0 ...

With Sigmoids and Tanh we have vanishing gradients

Dealing with Vanishing Gradient

Build Recurrent Neural Networks using small modules that are designed to remember values for a long time.

Long-Short Term Memories

Hochreiter & Schmidhuber (1997) solved the problem of vanishing gradient designing a memory cell using logistic and linear units with multiplicative interactions:

- Information gets into the cell whenever its "write" gate is on.
- The information stays in the cell so long as its "*keep*" gate is on.
- Information is read from the cell by turning on its "*read*" gate.

Can backpropagate through this since the loop has fixed weight.

POLITECNICO MILANO 1863

Figure 1: Architecture of memory cell c_j (the box) and its gate units in_j , out_j . The self-recurrent connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of the "constant error carrousel" CEC. The gate units open and close access to CEC. See text and appendix A.1 for details.

RNN vs. LSTM

Gated Recurrent Unit (GRU)

It combines the forget and input gates into a single "update gate." It also merges the cell state and hidden state, and makes some other changes.

LSTM Networks

You can build a computation graph with continuous transformations.

LSTM Networks

You can build a computation graph with continuous transformations.

LSTM Networks

You can build a computation graph with continuous transformations.

Sequential Data Problems

Fixed-sized input to fixed-sized output (e.g. image classification)

Sequence output (e.g. image captioning takes an image and outputs a sentence of words).

Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment).

Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French)

many to many

Synced sequence input and output (e.g. video classification where we wish to label each frame of the video)

Credits: Andrej Karpathy

Sequence to Sequence Modeling

Given <S, T> pairs, read S, and output T' that best matches T

Tips & Tricks

When conditioning on full input sequence Bidirectional RNNs exploit it:

- Have one RNNs traverse the sequence left-to-right
- Have another RNN traverse the sequence right-to-left
- Use concatenation of hidden layers as feature representation

When initializing RNN we need to specify the initial state

- Could initialize them to a fixed value (such as 0)
- Better to treat the initial state as learned parameters
 - Start off with random guesses of the initial state values
 - Backpropagate the prediction error through time all the way to the initial state values and compute the gradient of the error with respect to these
 - Update these parameters by gradient descent