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Probabilistic Reasoning for Time Series

To describe an ever changing world we can use a series of random 

variables describing the world state at any time instant!

 It represents a sequence of states: X1, X2, X3, …

 The transition from Xt-1 to Xt depends only on Xt-1

P(Xt|Xt-1, Xt-2, …, X1,X0)=P(Xt|Xt-1) (Markov Property)

 When transition probabilities are the same a any t, 

we are facing a stationary process.

 A Bayesian Network that forms a chain!

X2 X3 X4X1 …

(Let’s skip basic stuff and go to hidden models)
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• Given Xt the value of a system characteristic at time t described as a (state) 

random variable, we have:

 Discrete Stochastic Process: describes the a relationship between the 

stochastic description of a system (X0, X1, X2, …) at some discrete time 

steps.  

 A Continuous Stochastic Process is a stochastic process where the state 

can be observed at any time.

• A Discrete Stochastic Process is a (first order) Markov Chain when we 

have thet  t = 1, 2, 3, … and for all n states it holds:

• P(Xt+1=it+1|Xt=it, Xt-1=it-1,…,X1=i1,X0=i0)=P(Xt+1=it+1|Xt=it)

• Whenever the probability of an event is independent from time the Markov 

Chain is Stationary: P(Xt+1=j|Xt=i)=pij

Stochastic Processes and Markov Chains
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Markov Chain Description

• A Markov Chain can be described using a Transition Matrix where pij

describes the probability of getting into state j starting from state i:

• This transition matrix can be described also using a directed graph
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• Given a Markov Chain in state i at time m we can compute states probability 

after n time steps:  

P(Xm+n=j|Xm=i)=P(Xn=j|X0=i)=Pij(n)

• If we take n=2 we have 

Pij(2) =∑k pik · pkj Scalar product of row i and column j

• In general Pij(n) = ij-th element of P
n.

• The probability of being in a given state j at time n without knowing the 

exact state of Markov Chain at time 0 is thus:

∑i qi · Pij(n) = q · (column j of P
n
)

• where:

qi = state i probability at time 0

Computing Probabilities
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The Cola Example (I)

• Suppose our company produces two brands of Cola (i.e., Cola1, and Cola2) 

and there are no other Colas on the market. A person buying Cola1 will 

buy Cola1 again with probability 0.9. A persona buying Cola2 will buy Cola2 

again with probability 0.8. 

 Someone has bought Cola2, what’s the probability he/she will buy 

Cola1 after 2 times?

 Someone has bought Cola1, what’s the probability he/she will buy 

Cola1 again after 3 times?

 Suppose at some time 60% of clients bought Cola1 and 40% Cola2. 

After three purchases what’s the percentage of people buying Cola1?

Cola1

Cola2

Cola1

Cola2

0.100.90

0.800.20
P =
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• Someone has bought Cola2, what’s the probability he/she will buy Cola1 

after 2 times?

• P(X2=1|X0=2)=P21(2)

• Someone has bought Cola1, what’s the probability he/she will buy Cola1 

again after 3 times?

• P(X3=1|X0=1)=P11(3)

0.34

0.100.90

0.800.20

0.100.90

0.800.20

0.170.83

0.66
P2= =

The Cola Example (II)

0.100.90

0.800.20

0.2190.781

0.5620.438
P3= =

0.170.83

0.660.34
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• Suppose at some time 60% of clients bought Cola1 and 40% Cola2. After 

three purchases what’s the percentage of people buying Cola1?

p=∑i qi · Pij(3) = q · (column 1 of P
3
)

• Note: What we have discussed so far is the first-order Markov Chain. 

More generally, in kth-order Markov Chain, each state transition depends on 

previous k states.

The Cola Example (III)

0.64380.781

0.438

p= =0.400.60

What’s the size of transition probability matrix?

X1 X2 X3X0 …
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A Bunch of Definitions 

• Given a Markov Chain we define:

 State j is reachable from i if it exist a path from i to j

 States i and j communicate if i is reachable from j and viceversa

 A set of states S in a Markov Chain is closed if no state outside S is 

reachable from a state in S

 A state i is an absorbing state if pii=1

 A state i is transient if exists j reachable from i, but i is not reachable 

from j

 A state that is not transient is defined as recurrent

 A state i is periodic with period k>1 if k is the biggest number that 

divides the length of all path from i to i

 A state that is not periodic is said a-periodic

• If all states in a Markov Chain are recurrent, a-periodic, and communicate with 

each other, it is said to be Ergothic
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• A simple example of Ergothic Markov Chain is the following:

• Do the following transitions represent Ergothic Markov Chains?

Examples of Ergothic Markov Chains

1 320.3
0.7

0.5

0.25

0.5

0.75
0.3   0.7    0

0.5    0     0.5

0   0.25  0.75
P =

1/4   1/2    1/4

2/3    1/3     0

0      2/3   1/3
P =

1/2   1/2    0     0

1/2   1/2    0     0

0      0    2/3  1/3

0      0    1/4  3/4

P =

1 320.25
0.5

0.66

0.66

0.33

0.33

0.25

1 320.5
0.5

0.5

0.660.5
0.25

4 0.75

0.33
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• Being P the transition matrix of an Ergothic Markov Chain with n states we 

have that 

lim Pij(n) = j

• With  = [1 2 3 … n]= P being the Steady State Distribution

• The Cola Example:

n +

Steady State Distribution

n P11(n) P12(n) P21(n) P22(n)

1 .90 .10 .20 .80

2 .83 .17 .34 .66

3 .78 .22 .44 .56

5 .72 .28 .56 .44

10 .68 .32 .65 .35

20 .67 .33 .67 .33

30 .67 .33 .67 .33

40 .67 .33 .67 .33STEADY STATE

0.9   0.1

0.2   0.8P =

0.67   0.33

0.67   0.33
 =
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Transitory Behavior

• The behavior of a Markov Chain before getting to the Steady State id 

defined transitory

• We can compute the expected number of transition to reach state j being in 

state i for an Ergothic Markov Chain:

mij = pij(1)+ ∑kjpik· (1+mkj)= 1+∑kjpik· mkj

• The Cola Example:

 How many bottle on average a Cola1 buyer will have before switching 

to Cola2?

m12=1+∑kjp1k· mk2=1+0.9·m12 m12=10

 What about viceversa?

m21=1+∑kjp2k· mk1=1+0.8·m21 m21=5

TRANSITORYP
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• We have and absorbing Markov Chain if there exist one or more absorbing 

states and all the other are transient. 

• For an absorbing Markov Chain we can write the transition matrix as:

• where:

 Q is the transition matrix for transient states

 R is the trantion matrix from transient to absorbing states

• What kind of inference we could make with this model?

 How long it will take to get in an absorbing state given that we start 

from a transient one?

 Starting from a transient state, how long does it takes to get to an 

absorbing one?

Dealing with Absorbing States

Q R
P =

0 I
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• How long I remain in a transient state given that we start 

from a transient one?

 Being in a transient state i the average time spent in a transient state j is 

the ij-th element of (I-Q)-1

• Starting from a transient state, how long does it takes to get to 

an absorbing one?

 Being in transient state i the probability to get into an absorbing state j is 

the ij-th element of (I-Q)-1·R

• Example: in a company there are 3 levels: junior, senior, partner. You can 

leave the company as partner or not

 How long does a junior remains

in the company?

 What’s the probability for a junior

to leave the company as partner?

Inference in Absorbing Markov Chains

0.80 0.15 0 0.05 0

0 0.70 0.20 0.10 0

0 0 0.95 0 0.05

0 0 0 1 0

0 0 0 0 1

P =

J       S      P LN      LP
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The Company Example

• How long does a junior remains in the company?

 He/she will stay as Junior: m11 = 5

 He/she will stay as Senior: m12 = 2.5

 He/She will stay as Partner: m13 = 10

• What’s the probability for a junior to leave the company as partner?

 He/She will end up in state LP: m12 = 0.5

(I-Q)-1=
5   2.5   10

0   3.3  13.3

0    0     20

17.5 years!

(I-Q)-1· R =

0.5  0.5

0.3  0.7

0     1
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• Suppose we are a gambler and we start from a 3$ capital, with probability 

p=1/3 we can win 1$ and with probability 1-p=2/3 we loose 1$. We fail if 

out capital get to 0 and we win if our capital becomes 5.

• We can describe our capital as a Markov Chain being Xt our capital:

 Possible states: 0, 1, 2, 3, 4, 5

 Transition probability: p(Xt+1=Xt+1)=1/3, p(Xt+1=Xt-1)=2/3

• What kind of reasoning can we apply to this model?

 What’s the probability of sequence 3, 4, 3, 2, 3, 2, 1, 0?

 What’s the probability of success for the gambler?

 What’s the average number of bets the gambler will make?

Exercise: Gambler’s Ruin

X1=? X2=? X3=?X0=3 …
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Why Should I Care All This Crazy Math?

“Nice, but unless I want to gamble why should I care? I’m a computer engineer what 

this has to do with practical intelligent systems?”

• What do you this is the greatest revolution 

(or revolutionary company) on the web in 

the last decade?

• Assume a link from page A to page B is a recommendation of page B by the 

author of A (we say B is successor of A). 

 Quality of a page is related to its in-degree. 

 The of a page is related to the quality of pages linking to it

• This recursively defines the PageRank of a page [Brin & Page ‘98]

For a (better) detailed description feel free to read:

http://www-db.stanford.edu/~backrub/google.html

http://www.iprcom.com/papers/pagerank/

http://www-db.stanford.edu/~backrub/google.html
http://www.iprcom.com/papers/pagerank/
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Google’s PageRank 

• Suppose the web is an Ergothic Markov Chain (I know this is a big 

assumption). Consider browsing as an infinite random walk (surfing):

 Initially the surfer is at a random page

 At each step, the surfer proceeds 

• to a randomly chosen web page with probability d

• to a randomly chosen successor of the current page with probability 1-d

• The PageRank of a page is the fraction of steps the surfer spends on it in the 

limit.

A

B

C

D

E

F
G
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Definition of PageRank

• PageRank = the steady state probability for this Markov Chain  

 n is the total number of nodes in the graph

 d is the probability of a random jump

PageRank(C) = d/n+(1-d)(1/4 PageRan(A) +1/3 PageRank(B))

• Summarizes the “web opinion” about the page importance

 Query-independent 

 It can be faked … read the provided links if you are curious!





Euv

voutdegreevPageRankdduPageRank
),(

)(/)()1()(

A B

C
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Hidden Markov Models (HMM)

• We may not observe directly the states. The we get another 

Bayesian Network named as Hidden Markov Model (HMM).

• An HMM is described by a quintuple <S,E,P,A,B>

 S : {s1,…,sN } are the values for the hidden states

 E : {e1,…,eT } are the values for the observations

 P: probability distribution of the initial state

 A: transition probability matrix 

 B: emission probability matrix 

For a deeper description feel free to read:

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf

Xt+1XtXt-1

et+1etet-1e1

XT

eT

X1
… …

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
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An Example: The Audio Spectrum

• Audio Spectrum of the song for the Prothonotary Warbler 

• Audio Spectrum of the song for the Chestnut-sided Warbler

• What can we ask to an HMM?

 What bird is this? Time Series Classification

 How will the song continue? Time Series Prediction

 Is this bird sick? Outlier Detection

 What phases does this song have? Time Series Segmentation

Observations

State

Observations

State
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• What can we ask to this HMM?

 Will the stock go up or down? Time Series Prediction

 What type stock is this (eg, risky)? Time Series Classification

 Is the behavior abnormal (eg, BF)? Outlier Detection

Another Time Series Problem

Intel

Cisco
GE

MS



Matteo Matteucci - Information Retrieval and Data Mining

Music Analysis

• What can we ask to this HMM?

 Can we compose more of that? Time Series Prediction

 Is this Beethoven or Bach? Time Series Classification

 Can we segment it into themes? Time Series Segmentation
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Weather: A Markov Chain Model

• States: {Ssunny, Srainy, Ssnowy}

• State transition probabilities:

• Initial state distribution: 

q = (0.7  0.25  0.05)

• Given:

• What is the probability of this series? 

P(s)= P(Ssunny)P(Srainy|Ssunny)P(Srainy|Srainy)P(Srainy|Srainy)P(Ssnowy|Srainy)

P(Ssnowy|Ssnowy)=0.7·0.15·0.6·0.6·0.02·0.2=0.0001512

Sunny Rainy

Snowy

80%

15%

5%

60%

2%

38%

20%

75% 5%P =
0.80  0.15  0.05

0.38  0.60  0.02

0.75  0.05  0.20
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Weather: An Hidden Markov Models

65%

5%

30%

60%

10%

30%

50%

0% 50%

Sunny Rainy

Snowy

80%

15%

5%

60%

2%

38%

20%

75% 5%



Matteo Matteucci - Information Retrieval and Data Mining

Ingredients and Fundamental Questions

• States: {Ssunny, Srainy, Ssnowy}

• Observations: {Oshorts, Ocoat, Oumbrella}

• State transition probabilities:

• Observation probabilities:

• Initial state distribution: P = (0.7  0.25  0.05)

• Given:                              …

 What is the probability of this series?

 What is the underlying sequence of state?

 How can I learn my HMM parameters?

A =
0.80  0.15  0.05

0.38  0.60  0.02

0.75  0.05  0.20

B =
0.60  0.30  0.10

0.05  0.30  0.65

0.00  0.50  0.50
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Computing Forward Probability

• We define the Forward Probability as the probability of actual 

state and observations

P(Xt=si, e1:t)

• Why compute forward probability?

 Probability of observations: P(e1:t).

 Prediction: P(Xt+1=si | e1:t)=?

P(Xt=si, e1:t) = P(Xt=si,e1:t-1,et)

= j P(Xt-1=sj,Xt=si,e1:t-1,et)

= j P(et|Xt=si,Xt-1=sj,e1:t-1)P(Xt=si,Xt-1=sj,e1:t-1)

= j P(et|Xt=si)P(Xt=si|Xt-1=sj,e1:t-1)P(Xt-1=sj,e1:t-1)

= j P(et|Xt=si)P(Xt=si|Xt-1=sj)P(Xt-1=sj, e1:t-1)

i(t) = P(Xt=si, e1:t) 

= jP(Xt=si|Xt-1=sj)P(et|Xt=si)j(t-1)

= j Aij Biet j(t-1)

Same form, 

use recursion
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The Viterbi Algorithm

• From observations, compute the most likely hidden state sequence: 

argmax P(x1:t|e1:t) = argmax P(x1:t, e1:t)/P(e1:t)

= argmax P(x1:t, e1:t)

• By applying the Bayesian Network factorization

P(x1:t, e1:t) = P(X0) i=1,t P(Xi|Xi-1) P(ei|Xi)

• The solution we are looking for is the one that minimizes 

-logP(x1:t, e1:t)=–logP(X0) +i=1,t(–logP(Xi|Xi-1)–logP(ei|Xi))

• Given a HMM construct a graph that consists 1+t*N nodes:

 One initial node and N node at time i where jth represents Xi=sj.

 The link between the nodes Xi-1=sj and Xi=sk is associated with the 

length –log(P(Xi=sk| Xi-1=sj)P(ei|Xi=sk))

• The problem becomes that of finding the shortest path from X0=s0 to one 

of the nodes Xt=st.
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Baum-Welch Algorithm

• The previous two kinds of computation needs parameters =(P, A, B). 

Where do the probabilities come from? 

• Solution: Baum-Welch Algorithm (special case of EM)

 Unsupervised learning from observations

 Find argmax P(e1:t)

• Given an observation sequence, find out which transition probability and 

emission probability table assigns the highest probability to the observations:

1. Start with an initial set of parameters 0 (possibly arbitrary)

2. Compute pseudo counts: how many times the transition from

Xi-i=sj to Xi=sk occurred?

3. Use the pseudo counts to obtain a better set of parameters 1

4. Iterate until P1(e1:t) is not bigger than P(e1:t)
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Pseudo Counts and Backward Probability

• Given the observation sequence e1:T, 

 pseudo count of state si at time t is the probability P(Xt=si|e1:T)

P(Xt=si|e1:T) = P(Xt=si, e1:t, et+1:T)/P(e1:T)

= P(et+1:T| Xt=si, e1:t)P(Xt=si, e1:t)/P(e1:T)

= P(et+1:T| Xt=si)P(Xt=si|e1:t)P(e1:t)/P(e1:T)

= i(t) βi(t)/P(et+1:T|e1:t)

 pseudo counts of the link from Xt=si to Xt+1=sj is the probability 

P(Xt=si,Xt+1=sj|e1:T)=P(Xt=si,Xt+1=sj,e1:t,et+1,et+2:T)/P(e1:T)

= P(Xt=si,e1:t)P(Xt+1=sj|Xt=si)P(et+1|Xt+1=sj)

P(et+2:T|Xt+1=sj)/P(e1:T)

=P(Xt=si,e1:t)AijBjet+1P(et+2:T|Xt+1=sj)/P(e1:T)

= i(t) Aij Bjet βj(t+1)/P(e1:T)

• Being βj(t)=P(et+1,…,eT|Xt=sj) we can compute it backward

 βj(T)=1;

 βj(t)= j Aij Bjet βj(t+1).
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HMM Parameters Update

• We can efficiently compute forward and backward probability for all the 

states in the Hidden Markov Model

• To update our estimate of HMM parameters

 count(i): the total pseudo count of state si.

 count(i,j): the total pseudo count of transition from si to sj.

 Add P(Xt=si,Xt+1=sj|e1:T) to count(i,j)

 Add P(Xt=si|e1:T) to count(i)

 Add P(Xt=si|e1:T) to count(i,et)

 Updated Aij= count(i,j)/count(i)

 Updated Bjet=count(j,et)/count(j)

t-1 t t+1 t+2

i(t) bj(t+1)

aijbjet

Xt+1=sjXt=si
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Summary on HMM

• HMMs are generative probabilistic models for time series with hidden 

information (state). 

• There a few issues remaining:

 Zero probability problem

• Training sequence: AAABBBAAA

• Test sequence: AAABBBCAAA

 Finding “right” number of states, right structure

 Numerical instabilities

• Beside these problems they are extremely practical, best known methods in 

speech recognition, computer vision, robotics, …

You’d be surprised by the relationships between HMM 

and Kalman Filtering or Kalman Smoothing!


