
Robotics Project 2015-2016 (v 0.9)

Matteo Matteucci – Gianluca Bardaro

“Il Kobra non è un serpente ...”
Donatella Rettore – 1981

Introduction

This year project is divided in steps; each of them is worth some points out of the 5/32

points available for the final mark.

Some preliminary important notes:

 We have decided to follow a sort of “homework approach” so you should do the

homework to better understand some key concepts from the course … indeed a

few question comes from your colleague observations so blame them!

 We have not decided yet how much each part is worth, we will decide depending

on the overall distribution of results in the class to harmonize the overall score.

 Some data might be missing, some data might be useless, do not hesitate to

write us by email, for instance, to ask the weight of the robot and learn that it is

14Kg.

Part 1 – Gazebo model for the Kobra robot

You have to create a model of an existing robot called Kobra

http://www.nuzoo.it/it/prodotti-robot/kobra-videosorveglianza-mobile

It is a mobile robot moved by a skidsteer system based on two paired wheels (we refer

to model with the wheels not the one with the trucks on the website). The minimum

required element for the model are:

1. Body of the robot with the correct shape and size.

http://www.nuzoo.it/it/prodotti-robot/kobra-videosorveglianza-mobile

2. Four wheels, each one actuated by its own motor. Wheels on each side are

synchronized and must move together. This is necessary in order to simulate a

skidsteer. (Other solution with the same behavior are accepter)

3. Straight vertical arm with a camera on top.

4. Pan tilt camera, it has to be placed at the end of a chain of two 1dof joints placed

on the vertical arm.

5. Hokuyo laser on the front of the robot.

All the details of the geometrical details (i.e. shape of the wheels, position of the

sensor, etc.) of the robot are available on the robot website, and you can derive useful

information from the video as well!

The missing info we have not been able to derive from the robot datasheet and the

robot web page is the size of the wheels which we have measured being 4.5cm thick

and have a 14.5cm diameter (wheelbase 18cm, track 49.5cm). The two links of the pan-

tilt are obtained through dynamixel motors, but you just need to model reasonable

joints with 3cm links, not the real servos.

Part 2 – Gazebo plugin and ROS setup

First of all you need to implement any kind of Gazebo plugin required to the correct

operation of each element of the robot. Here the minimum requirement:

1. Odometry and control:

a. Convert from the speed of the wheels to the linear velocity x and angular

velocity ω.

b. Integrate the velocity of the robot to estimate a relative displacement

after each velocity reading.

c. Convert from commands sent to the robot using linear velocity x and

angular velocity ω to the wheel speed.

d. Manage the four motors to achieve a proper skidsteer movement.

2. Camera control: manage the two joints controlling the camera to simulate a pan-

tilt movement in terms of pan and tilt.

3. Laser: if necessary, manage the laser accordingly using a plugin.

Then you have to prepare the interface between Gazebo and the ROS architecture. It is

strongly suggested to do this alongside the development of the plugins. Do your own

choices for the name of the topics and the types of messages, but remember to follow

standards and existing interfaces.

1. Odometry and control:

a. /robot/odometry: publish the current speed of the robot and the relative

displacement at the simulation frequency.

b. /robot/cmd_velocity: subscribe to this topic to control the robot.

2. Sensors:

a. /robot/image: publish images coming from the camera.

b. /robot/camera_info: publish a topic with the characteristics of the camera.

c. /robot/laser_scan: publish the scans from the laser.

d. /robot/ptz: subscribe to a custom message defined as ptz.msg containing

the pan and tilt commands as floats (radiants) plus a third float

representing the zoom (not used)

3. tf:

a. Publish a low frequency transform of the real pose of the robot taken form

the simulator, available only for testing purpose /robot_gt.

b. Publish the static transform for each sensor with respect to the /base_link

frame.

c. Publish the transform for each joint controlling the pan-tilt camera with

respect to the proper frame.

Part 3 – Odometry ROS node

In this part, you have to develop a ROS node to manage the odometry measurements

and integrate them to provide an high frequency absolute position estimate of the

robot using tf from the /odom frame (initially the /base_link frame coincide with the

/odom frame).

Three versions of the integration algorithm needs to be implemented and should be

selectable through a ROS parameter from a launch file:

1. Simple integration using Euler method (Euler)

2. Runge-Kutta integration (Runge-Kutta)

3. Exact integration (Exact)

You can find the details of the three methods in these slides

http://www.dis.uniroma1.it/~oriolo/amr/slides/OdometricLocalization_Slides.pdf

Note: in the next days a bag file will be provided with commands from a joypad

(sensor_msgs/Joy.msg) to control the robot around and test the camera, in the

meanwhile, for your testing and debugging, you can use rostopic or the turtle_teleop

node.

Part 4 – Navigation and planning

Available soon … stay tuned!

http://www.dis.uniroma1.it/~oriolo/amr/slides/OdometricLocalization_Slides.pdf

