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Outline

● Motivation and examples
● Graph nets

○ (Semi)-formal definition
○ Interaction network
○ Relation network
○ Gated graph sequence neural network
○ Attention is all you need

● Implementation example
● Conclusions
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Motivation
● The modern machine learning toolkit is 

well-suited to data that is:
○ Fixed-length (MLPs)
○ Sequential (RNNs) 
○ Spatial (CNNs)
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Motivation
● The modern machine learning toolkit is 

well-suited to data that is:
○ Fixed-length (MLPs)
○ Sequential (RNNs) 
○ Spatial (ConvNets)

● But there is not much to support graph 
structured data.

Image Credit - Diane Harris Cline, Vossman
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Motivation
● The world is complex, yet very 

structured
● Many things and problems are 

fundamentally relational
● Many problems can be naturally 

represented as graphs.
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 Decoding structure

 Reasoning about structure

Inferring structure from unstructured 
data

Tasks on graphs categorization

Inferring 
structure

Reasoning

Decoding
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Image Credit - Leibe et Al.

Categorization examples

Parsing language Visual scene recognition

DecodingInferring Reasoning
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Physical state prediction

Image Credit - Battaglia et al.

Categorization examples
DecodingInferring Reasoning

Molecule structure generation

Image Credit - Li et al.
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Categorization examples
DecodingInferring Reasoning

Drug toxicity prediction Finding the treasure

Image Credit - Andrew Doane and lastspark, from Noun ProjectImage Credit - Greg Rodgers
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Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

Image Credit - Artyom Kalinin
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Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph 
kernels, etc ..
○ Measure similarity between 

graphs

Image Credit -Ghosh et al. Image Credit - Vishwanathan et al.
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Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph 
kernels, etc ..
○ Measure similarity between 

graphs
● Graphical models

○ Restricted Boltzmann Machines
○ Deep Belief Networks
○ Deep Boltzmann Machines

Image Credit - Geoffrey Hinton
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Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph 
kernels, etc ..

● Graphical models
○ Restricted Boltzmann Machines
○ Deep Belief Networks
○ Deep Boltzmann Machines

● Graph neural nets!

Image Credit - Back to the future!
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Right! ….but what is a Graph net??
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● Growing interest:
○ Graph Neural Networks (Scarselli et al 2007; 2008)
○ Pointer Networks (Vinyals et al 2015)
○ Graph Convolutional Networks (Bruna et al 2013; Duvenaud et al 2015; Henaff et 

al 2015; Kipf & Welling 2016; Schlichtkrull et al 2017; Defferrard et al 2017)
○ Gated Graph Neural Networks (Li et al 2015)
○ Interaction Networks (Battaglia et al 2016; Watters et al 2017;Raposo et al 2017; )
○ Message Passing Networks (Gilmer et al. 2017)
○ Deep Generative Models of Graphs (Li et al. 2018)

Graph nets
Literature (partial)
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● Graph nets (GNs) are a class of 
models that: 
○ Use graphs as 

■ inputs and/or 
■ outputs and/or 
■ latent representation

Graph nets
High level
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● Graph nets (GNs) are a class of 
models that: 
○ Use graphs as 

■ inputs and/or 
■ outputs and/or 
■ latent representation

○ Manipulate graph-structured 
representations

○ Share model components across 
entities and relations

Graph nets
High level
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Graph nets
Core idea

Task: Is there a golden object in the 
scene? 
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Graph nets
Core idea

Task: Is there a golden object in the 
scene? 

MLP: Inefficient learning; needs to see 
object of interest in all possible positions

ConvNet: efficient; applies same function 
at each position (e.g. is the golden object 
at position x?) and then pools over the 
outcomes
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Graph nets
Core idea

Task: Are there two red objects close to 
each other? 
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Graph nets
Core idea

Task: Are there two red objects close to 
each other? 

ConvNet: Use a kernel large enough (e.g. 
2x2 for this) and check if one has 2 red 
object in its receptive field

Observed patches by the 2x2 kernel are:

Note: within the patch, convnet needs to 
experience all permutations
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Graph nets
Core idea

Edges

Node states

Graph Nets: Think of your observation as a 
graph
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Graph nets
Core idea

The number of 
edges grows 
quadratically !!!

Graph Nets: Think of your observation as a 
graph
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Graph nets
Core idea

Represent the node 
sparsely, by 
detecting the 

objects of interest

Still O(n2) 
edges!

Graph Nets: Think of your observation as a 
graph
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Graph nets
Core idea Use a sparse representation

for the edges, if you know 
which objects are allowed to 

interact

Graph Nets: Think of your observation as a 
graph
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Graph nets
Core idea

Reason in terms of pairs !
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Graph nets
Core idea

● Same function re-used for 
every edge to compute its 
effect

● Same function re-used for 
every node to compute its 
new state given sum of all 
incoming effects and its state

● Invariant to the position of 
objects !

● Invariant to the distance 
between objects in 
topological spaceReason in terms of pairs !
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● Edge effects:
○ edge type
○ <related node states>
○ global state

Graph nets
States update
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● Edge effects: 
○ edge type
○ <related node states>
○ global state

● Node update:
○ node state
○ summed effects on incoming edges 
○ global state

Graph nets
States update

Sum is commutative and associative!
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● Edge effects: 
○ edge type
○ <related node states>
○ global state

● Node update:
○ node state
○ summed effects on incoming edges 
○ global state

● Global state update:
○ <node states>
○ global state

Graph nets
Global state update
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Graph nets
Components

● G = <O, R> Graph

● O = {o1, o2, .., om} Collection of objects

○ o_i = {oi
1, oi

2, …, oi
n} Object i with n features

● R = {r1, r2, .., rk} Collection of relations between objects

○ rk = <oi, oj, ak> Relation k between oi and oj with attribute ak

● E = {ek} Collection of effects of relations

● X = {xl} Collection of external effects
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Graph nets
Components

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))
Graph

Marshalling function
Relation model: 
predict the effects
External effects

Aggregation function

Object model

Aggregation function

Abstraction model
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Interaction networks

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))
Graph

Marshalling function
Relation model: 
predict the effects
External effects

Objects

Aggregation function

Object model

Aggregation function

Abstraction model

MLP

Fixed! Matrix prod + 
concat

MLP columnwise

Fixed! Matrix prod

MLP columnwise

Fixed! Matrix prod
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● Reason about interactions between objects
● Physical reasoning

○ n-body domain: galaxy of objects that interact
○ bouncing balls: balls in a box bounce on walls and can collide
○ string comprised of masses connected by springs

● Learnable physics engine simulation!
● Works/transfers to variable number of objects!
● Graph to graph

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Interaction networks
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out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Interaction networks

Image Credit - Battaglia et al.
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Interaction networks
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Interaction networks

http://www.youtube.com/watch?v=2xdkZ4wmv5M
http://www.youtube.com/watch?v=qZLw8wmrJGg
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out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks

Implicit (fixed: tuples)

Not modeled
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out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks

MLP columnwise

Any aggregation 
function commutative 
and associative

MLP
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● Reason about objects and their relations
○ Classification of scenes from graph representation
○ Classification of scenes from raw input
○ Exploit the relations to perform one-shot relation learning 

on a new scene
● Graph to vectors

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks
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out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks on CLEVR



Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Gated graph sequence neural networks

Connectivity function

Linear
Sum over nodes + 
soft self attention

GRU
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● Reason about verification of computer programs
● Attempt to prove code properties, such as memory safety
● BABI task (language comprehension)
● Per-node predictions
● Gated (GRU style) updates to the nodes
● Internal propagation steps while generating outputs sequentially
● First follow up of Scarselli 2008

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Gated graph sequence neural networks
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out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Attention is all you need

Different input 
tokens (nodes)

Masking (optional)

Linear (resulting in 
key, query & value)

Attention (including 
accumulation); head 
Concat 
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● Consider each time-step (input or hidden state) as a node
● Reason about the inner relations in its hidden state (over time)

○ Exploit self attention as a form of recursive memory
○ Multiple attention heads in parallel (eq. to multiple edges per same nodes in IN)

● Not explicitly introduced as a graph network approach
● Equivalent to Graph Convolutional Net, or Graph net with a fully connected 

graph but with attention on the edges
● Graph to vector

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Attention is all you need
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Cool! Where can I get one??



Graph Propagation Core
# node states and edges
states = tf.placeholder(tf.float32)
edges = tf.placeholder(tf.int32)

# use sonnet or your favorite toolkit to build
# feedforward networks
effect_net = snt.Sequential(...)
node_net = snt.Sequential(...)

# compute effects / messages along each edge, edge
# features can be fed into the model too if available
states_from = tf.gather(states, edges[:, 0])
states_to = tf.gather(states, edges[:, 1])
concat_states = tf.concat([states_from, states_to],
    axis=-1)
effects = effect_net(concat_states)

# aggregate incoming effects by a sum, or average
aggregated_effects = tf.unsorted_segment_sum(effects,
    edges[:, 1], tf.shape(states)[0])

# update the node states
states = node_net(tf.concat([aggregated_effects,
    states], axis=-1))

0

1

2

3

states
0 1

1 2

3 1

edges

0
1
2
3

(0, 1)
(1, 2)
(3, 1)

effects sum 
effects

0
1
2
3

new states

from to



Output Modules
# graph-level output
graph_vec = tf.reduce_sum(states, axis=0)
graph_output = graph_level_network(graph_vec)
...     # feed into your favorite loss

# node-level output
node_outputs = node_level_net(states)
...     # feed into your favorite loss

# edge-level output
states_from = tf.gather(states, edges[:, 0])
states_to = tf.gather(states, edges[:, 1])
concat_states = tf.concat([states_from, states_to],
    axis=-1)
edge_outputs = edge_level_net(concat_states)
...     # feed into your favorite loss

Graph-level output

Node-level output

Edge-level output



Output Modules
# relational network style graph-level output

# concat_states <- paired states for all (i,j) pairs
effects = effect_net(concat_states)
graph_vec = tf.reduce_sum(effects, axis=0)
graph_output = graph_level_network(graph_vec)
...     # feed into your favorite loss

Relation network style graph-level output
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Conclusions

● Graph nets are a powerful model to reason on graph related structures
● There are three main categories of tasks in this domain:

○ vector to graph
○ graph to graph
○ graph to vector

● Several variants of graph nets have been proposed in the literature
● They are easy to implement!
● Sky is the limit: surprise us!!!



THANK YOU
Credits

Razvan Pascanu, Victor Bapst


