
Graph neural networks
February 2018

Visin Francesco

Graph Nets — Francesco Visin

Who I am

Graph Nets — Francesco Visin

Outline

● Motivation and examples
● Graph nets

○ (Semi)-formal definition
○ Interaction network
○ Relation network
○ Gated graph sequence neural network
○ Attention is all you need

● Implementation example
● Conclusions

Graph Nets — Francesco Visin

Motivation
● The modern machine learning toolkit is

well-suited to data that is:
○ Fixed-length (MLPs)
○ Sequential (RNNs)
○ Spatial (CNNs)

Graph Nets — Francesco Visin

Motivation
● The modern machine learning toolkit is

well-suited to data that is:
○ Fixed-length (MLPs)
○ Sequential (RNNs)
○ Spatial (ConvNets)

● But there is not much to support graph
structured data.

Image Credit - Diane Harris Cline, Vossman

Graph Nets — Francesco Visin

Motivation
● The world is complex, yet very

structured

Graph Nets — Francesco Visin

Motivation
● The world is complex, yet very

structured
● Many things and problems are

fundamentally relational

Graph Nets — Francesco Visin

Motivation
● The world is complex, yet very

structured
● Many things and problems are

fundamentally relational
● Many problems can be naturally

represented as graphs.

Graph Nets — Francesco Visin

 Decoding structure

 Reasoning about structure

Inferring structure from unstructured
data

Tasks on graphs categorization

Inferring
structure

Reasoning

Decoding

Graph Nets — Francesco Visin

Image Credit - Leibe et Al.

Categorization examples

Parsing language Visual scene recognition

DecodingInferring Reasoning

Graph Nets — Francesco Visin

Physical state prediction

Image Credit - Battaglia et al.

Categorization examples
DecodingInferring Reasoning

Molecule structure generation

Image Credit - Li et al.

Graph Nets — Francesco Visin

Categorization examples
DecodingInferring Reasoning

Drug toxicity prediction Finding the treasure

Image Credit - Andrew Doane and lastspark, from Noun ProjectImage Credit - Greg Rodgers

Graph Nets — Francesco Visin

Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

Image Credit - Artyom Kalinin

Graph Nets — Francesco Visin

Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph
kernels, etc ..
○ Measure similarity between

graphs

Image Credit -Ghosh et al. Image Credit - Vishwanathan et al.

Graph Nets — Francesco Visin

Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph
kernels, etc ..
○ Measure similarity between

graphs
● Graphical models

○ Restricted Boltzmann Machines
○ Deep Belief Networks
○ Deep Boltzmann Machines

Image Credit - Geoffrey Hinton

Graph Nets — Francesco Visin

Graphs & Computer Science/Machine Learning
● Graph algorithms

○ Dijkstra
○ Bellman-Ford

● Hand-crafted features, graph
kernels, etc ..

● Graphical models
○ Restricted Boltzmann Machines
○ Deep Belief Networks
○ Deep Boltzmann Machines

● Graph neural nets!

Image Credit - Back to the future!

Graph Nets — Francesco Visin

Right! ….but what is a Graph net??

Graph Nets — Francesco Visin

● Growing interest:
○ Graph Neural Networks (Scarselli et al 2007; 2008)
○ Pointer Networks (Vinyals et al 2015)
○ Graph Convolutional Networks (Bruna et al 2013; Duvenaud et al 2015; Henaff et

al 2015; Kipf & Welling 2016; Schlichtkrull et al 2017; Defferrard et al 2017)
○ Gated Graph Neural Networks (Li et al 2015)
○ Interaction Networks (Battaglia et al 2016; Watters et al 2017;Raposo et al 2017;)
○ Message Passing Networks (Gilmer et al. 2017)
○ Deep Generative Models of Graphs (Li et al. 2018)

Graph nets
Literature (partial)

Graph Nets — Francesco Visin

● Graph nets (GNs) are a class of
models that:
○ Use graphs as

■ inputs and/or
■ outputs and/or
■ latent representation

Graph nets
High level

Graph Nets — Francesco Visin

● Graph nets (GNs) are a class of
models that:
○ Use graphs as

■ inputs and/or
■ outputs and/or
■ latent representation

○ Manipulate graph-structured
representations

Graph nets
High level

Graph Nets — Francesco Visin

● Graph nets (GNs) are a class of
models that:
○ Use graphs as

■ inputs and/or
■ outputs and/or
■ latent representation

○ Manipulate graph-structured
representations

○ Share model components across
entities and relations

Graph nets
High level

Graph Nets — Francesco Visin

Graph nets
Core idea

Task: Is there a golden object in the
scene?

Graph Nets — Francesco Visin

Graph nets
Core idea

Task: Is there a golden object in the
scene?

MLP: Inefficient learning; needs to see
object of interest in all possible positions

Graph Nets — Francesco Visin

Graph nets
Core idea

Task: Is there a golden object in the
scene?

MLP: Inefficient learning; needs to see
object of interest in all possible positions

ConvNet: efficient; applies same function
at each position (e.g. is the golden object
at position x?) and then pools over the
outcomes

Graph Nets — Francesco Visin

Graph nets
Core idea

Task: Are there two red objects close to
each other?

Graph Nets — Francesco Visin

Graph nets
Core idea

Task: Are there two red objects close to
each other?

ConvNet: Use a kernel large enough (e.g.
2x2 for this) and check if one has 2 red
object in its receptive field

Observed patches by the 2x2 kernel are:

Note: within the patch, convnet needs to
experience all permutations

Graph Nets — Francesco Visin

Graph nets
Core idea

Edges

Node states

Graph Nets: Think of your observation as a
graph

Graph Nets — Francesco Visin

Graph nets
Core idea

The number of
edges grows
quadratically !!!

Graph Nets: Think of your observation as a
graph

Graph Nets — Francesco Visin

Graph nets
Core idea

Represent the node
sparsely, by
detecting the

objects of interest

Still O(n2)
edges!

Graph Nets: Think of your observation as a
graph

Graph Nets — Francesco Visin

Graph nets
Core idea Use a sparse representation

for the edges, if you know
which objects are allowed to

interact

Graph Nets: Think of your observation as a
graph

Graph Nets — Francesco Visin

Graph nets
Core idea

Reason in terms of pairs !

Graph Nets — Francesco Visin

Graph nets
Core idea

● Same function re-used for
every edge to compute its
effect

● Same function re-used for
every node to compute its
new state given sum of all
incoming effects and its state

● Invariant to the position of
objects !

● Invariant to the distance
between objects in
topological spaceReason in terms of pairs !

Graph Nets — Francesco Visin

● Edge effects:
○ edge type
○ <related node states>
○ global state

Graph nets
States update

Graph Nets — Francesco Visin

● Edge effects:
○ edge type
○ <related node states>
○ global state

● Node update:
○ node state
○ summed effects on incoming edges
○ global state

Graph nets
States update

Sum is commutative and associative!

Graph Nets — Francesco Visin

● Edge effects:
○ edge type
○ <related node states>
○ global state

● Node update:
○ node state
○ summed effects on incoming edges
○ global state

● Global state update:
○ <node states>
○ global state

Graph nets
Global state update

Graph Nets — Francesco Visin

Graph nets
Components

● G = <O, R> Graph

● O = {o1, o2, .., om} Collection of objects

○ o_i = {oi
1, oi

2, …, oi
n} Object i with n features

● R = {r1, r2, .., rk} Collection of relations between objects

○ rk = <oi, oj, ak> Relation k between oi and oj with attribute ak

● E = {ek} Collection of effects of relations

● X = {xl} Collection of external effects

Graph Nets — Francesco Visin

Graph nets
Components

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))
Graph

Marshalling function
Relation model:
predict the effects
External effects

Aggregation function

Object model

Aggregation function

Abstraction model

Graph Nets — Francesco Visin

Interaction networks

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))
Graph

Marshalling function
Relation model:
predict the effects
External effects

Objects

Aggregation function

Object model

Aggregation function

Abstraction model

MLP

Fixed! Matrix prod +
concat

MLP columnwise

Fixed! Matrix prod

MLP columnwise

Fixed! Matrix prod

Graph Nets — Francesco Visin

● Reason about interactions between objects
● Physical reasoning

○ n-body domain: galaxy of objects that interact
○ bouncing balls: balls in a box bounce on walls and can collide
○ string comprised of masses connected by springs

● Learnable physics engine simulation!
● Works/transfers to variable number of objects!
● Graph to graph

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Interaction networks

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Interaction networks

Image Credit - Battaglia et al.

Graph Nets — Francesco Visin

Interaction networks

Graph Nets — Francesco Visin

Interaction networks

http://www.youtube.com/watch?v=2xdkZ4wmv5M
http://www.youtube.com/watch?v=qZLw8wmrJGg

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks

Implicit (fixed: tuples)

Not modeled

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks

MLP columnwise

Any aggregation
function commutative
and associative

MLP

Graph Nets — Francesco Visin

● Reason about objects and their relations
○ Classification of scenes from graph representation
○ Classification of scenes from raw input
○ Exploit the relations to perform one-shot relation learning

on a new scene
● Graph to vectors

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Relation networks on CLEVR

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Gated graph sequence neural networks

Connectivity function

Linear
Sum over nodes +
soft self attention

GRU

Graph Nets — Francesco Visin

● Reason about verification of computer programs
● Attempt to prove code properties, such as memory safety
● BABI task (language comprehension)
● Per-node predictions
● Gated (GRU style) updates to the nodes
● Internal propagation steps while generating outputs sequentially
● First follow up of Scarselli 2008

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Gated graph sequence neural networks

Graph Nets — Francesco Visin

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Attention is all you need

Different input
tokens (nodes)

Masking (optional)

Linear (resulting in
key, query & value)

Attention (including
accumulation); head
Concat

Graph Nets — Francesco Visin

● Consider each time-step (input or hidden state) as a node
● Reason about the inner relations in its hidden state (over time)

○ Exploit self attention as a form of recursive memory
○ Multiple attention heads in parallel (eq. to multiple edges per same nodes in IN)

● Not explicitly introduced as a graph network approach
● Equivalent to Graph Convolutional Net, or Graph net with a fully connected

graph but with attention on the edges
● Graph to vector

out = ᷪA(g(ᷪO(᷍(X, ᷪR(m(G))))))

Attention is all you need

Graph Nets — Francesco Visin

Cool! Where can I get one??

Graph Propagation Core
node states and edges
states = tf.placeholder(tf.float32)
edges = tf.placeholder(tf.int32)

use sonnet or your favorite toolkit to build
feedforward networks
effect_net = snt.Sequential(...)
node_net = snt.Sequential(...)

compute effects / messages along each edge, edge
features can be fed into the model too if available
states_from = tf.gather(states, edges[:, 0])
states_to = tf.gather(states, edges[:, 1])
concat_states = tf.concat([states_from, states_to],
 axis=-1)
effects = effect_net(concat_states)

aggregate incoming effects by a sum, or average
aggregated_effects = tf.unsorted_segment_sum(effects,
 edges[:, 1], tf.shape(states)[0])

update the node states
states = node_net(tf.concat([aggregated_effects,
 states], axis=-1))

0

1

2

3

states
0 1

1 2

3 1

edges

0
1
2
3

(0, 1)
(1, 2)
(3, 1)

effects sum
effects

0
1
2
3

new states

from to

Output Modules
graph-level output
graph_vec = tf.reduce_sum(states, axis=0)
graph_output = graph_level_network(graph_vec)
... # feed into your favorite loss

node-level output
node_outputs = node_level_net(states)
... # feed into your favorite loss

edge-level output
states_from = tf.gather(states, edges[:, 0])
states_to = tf.gather(states, edges[:, 1])
concat_states = tf.concat([states_from, states_to],
 axis=-1)
edge_outputs = edge_level_net(concat_states)
... # feed into your favorite loss

Graph-level output

Node-level output

Edge-level output

Output Modules
relational network style graph-level output

concat_states <- paired states for all (i,j) pairs
effects = effect_net(concat_states)
graph_vec = tf.reduce_sum(effects, axis=0)
graph_output = graph_level_network(graph_vec)
... # feed into your favorite loss

Relation network style graph-level output

Graph Nets — Francesco Visin

Conclusions

● Graph nets are a powerful model to reason on graph related structures
● There are three main categories of tasks in this domain:

○ vector to graph
○ graph to graph
○ graph to vector

● Several variants of graph nets have been proposed in the literature
● They are easy to implement!
● Sky is the limit: surprise us!!!

THANK YOU
Credits

Razvan Pascanu, Victor Bapst

