

Graph neural networks

February 2018

Visin Francesco

Who I am

Outline

- Motivation and examples
- Graph nets
 - (Semi)-formal definition
 - Interaction network
 - Relation network
 - Gated graph sequence neural network
 - Attention is all you need
- Implementation example
- Conclusions

- The modern machine learning toolkit is well-suited to data that is:
 - Fixed-length (MLPs)
 - Sequential (RNNs)
 - Spatial (CNNs)

LSTM Encoder

LSTM Decoder

- The modern machine learning toolkit is well-suited to data that is:
 - Fixed-length (MLPs)
 - Sequential (RNNs)
 - Spatial (ConvNets)
- But there is not much to support **graph structured** data.

Image Credit - Diane Harris Cline, Vossman

• The world is complex, yet very structured

- The world is complex, yet very structured
- Many things and problems are fundamentally relational

- The world is complex, yet very structured
- Many things and problems are fundamentally relational
- Many problems can be naturally represented as graphs.

Tasks on graphs categorization

Categorization examples

Parsing language

Visual scene recognition

Image Credit - Leibe et Al.

Graph Nets - Francesco Visin

Categorization examples

Physical state prediction

Molecule structure generation

Image Credit - Battaglia et al.

Categorization examples

Drug toxicity prediction

Finding the treasure

Image Credit - Andrew Doane and lastspark, from Noun Project

Image Credit - Greg Rodgers

- Graph algorithms
 - Dijkstra
 - Bellman-Ford

Image Credit - Artyom Kalinin

- Graph algorithms
 - Dijkstra
 - Bellman-Ford
- Hand-crafted features, graph kernels, etc ..
 - Measure similarity between graphs

Image Credit - Vishwanathan et al.

Image Credit -Ghosh et al.

Graph Nets - Francesco Visin

- Graph algorithms
 - Dijkstra
 - Bellman-Ford
- Hand-crafted features, graph kernels, etc ..
 - Measure similarity between graphs
- Graphical models
 - Restricted Boltzmann Machines
 - Deep Belief Networks
 - Deep Boltzmann Machines

Image Credit - Geoffrey Hinton

- Graph algorithms
 - Dijkstra
 - Bellman-Ford
- Hand-crafted features, graph kernels, etc ..
- Graphical models
 - Restricted Boltzmann Machines
 - Deep Belief Networks
 - Deep Boltzmann Machines
- Graph neural nets!

Image Credit - Back to the future!

Right!but what is a Graph net??

Graph Nets – Francesco Visin

Literature (partial)

• Growing interest:

- Graph Neural Networks (Scarselli et al 2007; 2008)
- Pointer Networks (Vinyals et al 2015)
- Graph Convolutional Networks (Bruna et al 2013; Duvenaud et al 2015; Henaff et al 2015; Kipf & Welling 2016; Schlichtkrull et al 2017; Defferrard et al 2017)
- Gated Graph Neural Networks (Li et al 2015)
- Interaction Networks (Battaglia et al 2016; Watters et al 2017; Raposo et al 2017;)
- Message Passing Networks (Gilmer et al. 2017)
- Deep Generative Models of Graphs (Li et al. 2018)

Graph nets High level

- Graph nets (GNs) are a class of models that:
 - Use graphs as
 - inputs and/or
 - outputs and/or
 - latent representation

Graph nets High level

- Graph nets (GNs) are a class of models that:
 - Use graphs as
 - inputs and/or
 - outputs and/or
 - latent representation
 - Manipulate graph-structured representations

Graph nets High level

- Graph nets (GNs) are a class of models that:
 - Use graphs as
 - inputs and/or
 - outputs and/or
 - latent representation
 - Manipulate graph-structured representations
 - Share model components across entities and relations

Task: Is there a golden object in the scene?

Graph Nets - Francesco Visin

Task: Is there a golden object in the scene?

MLP: Inefficient learning; needs to see object of interest in all possible positions

Task: Is there a golden object in the scene?

MLP: Inefficient learning; needs to see object of interest in all possible positions

ConvNet: efficient; applies same function at each position (e.g. is the golden object at position x?) and then pools over the outcomes

Task: Are there two red objects close to each other?

Task: Are there two red objects close to each other?

ConvNet: Use a kernel large enough (e.g. 2x2 for this) and check if one has 2 red object in its receptive field

Observed patches by the 2x2 kernel are:

Note: within the patch, convnet needs to experience all permutations

Graph Nets: Think of your observation as a graph

O DeepMind

Graph Nets: Think of your observation as a graph

Graph Nets - Francesco Visin

- Same function re-used for every edge to compute its effect
- Same function re-used for every node to compute its new state given sum of all incoming effects and its state
- Invariant to the position of objects !
- Invariant to the distance between objects in topological space

States update

- Edge effects:
 - edge type
 - <related node states>
 - global state

States update

• Edge effects:

- edge type
- <related node states>
- global state
- Node update:
 - node state
 - summed effects on incoming edges
 - global state

Sum is commutative and associative!

Global state update

• Edge effects:

- edge type
- <related node states>
- global state

• Node update:

- node state
- summed effects on incoming edges
- global state

• Global state update:

- o <node states>
- global state

- **G** = <0, R>
- $\mathbf{O} = \{O_1, O_2, ..., O_m\}$
 - **o_i** = { $o_i^1, o_i^2, ..., o_i^n$ }
- **R** = { $r_1, r_2, .., r_k$ }
 - **r**_k = <0_i, 0_j, a_k>
- **E** = {e_k}
- $\mathbf{X} = \{\mathbf{x}_{|}\}$

Components

Graph

Collection of **objects** Object *i* with *n* **features** Collection of **relations** between objects Relation *k* between o_i and o_j with **attribute** a_k Collection of **effects** of relations Collection of **external effects**

Graph

Marshalling function Relation model: predict the effects External effects

Objects

Aggregation function Object model Aggregation function

Abstraction model

out = $\phi_A(g(\phi_O(\alpha(X, \phi_R(m(G))))))$

- Reason about interactions between objects
- Physical reasoning
 - n-body domain: galaxy of objects that interact
 - bouncing balls: balls in a box bounce on walls and can collide
 - string comprised of masses connected by springs
- Learnable physics engine simulation!
- Works/transfers to variable number of objects!
- Graph to graph

out = $\phi_A(g(\phi_O(\alpha(X, \phi_R(m(G))))))$

Image Credit - Battaglia et al.

Model

True

Model

Model

Relation networks

Relation networks

Relation networks

out =
$$\phi_{A}(g(\phi_{O}(\alpha(X, \phi_{R}(m(G))))))$$

- Reason about objects and their relations
 - Classification of scenes from graph representation
 - Classification of scenes from raw input
 - Exploit the relations to perform one-shot relation learning on a new scene
- Graph to vectors

Relation networks on CLEVR

out = $\phi_{A}(g(\phi_{O}(\alpha(X, \phi_{R}(m(G))))))$

Gated graph sequence neural networks

Gated graph sequence neural networks

out = $\phi_A(g(\phi_O(\alpha(X, \phi_R(m(G))))))$

- Reason about verification of computer programs
- Attempt to prove code properties, such as memory safety
- BABI task (language comprehension)
- Per-node predictions
- Gated (GRU style) updates to the nodes
- Internal propagation steps while generating outputs sequentially
- First follow up of Scarselli 2008

Attention is all you need

Attention is all you need

out = $\phi_{A}(g(\phi_{O}(\alpha(X, \phi_{R}(m(G))))))$

- Consider each time-step (input or hidden state) as a node
- Reason about the inner relations in its hidden state (over time)
 - Exploit self attention as a form of recursive memory
 - Multiple attention heads in parallel (eq. to multiple edges per same nodes in IN)
- Not explicitly introduced as a graph network approach
- Equivalent to Graph Convolutional Net, or Graph net with a fully connected graph but with attention on the edges
- Graph to vector

Cool! Where can I get one??

Graph Nets – Francesco Visin

Graph Propagation Core

```
# node states and edges
states = tf.placeholder(tf.float32)
edges = tf.placeholder(tf.int32)
```

```
# use sonnet or your favorite toolkit to build
# feedforward networks
effect_net = snt.Sequential(...)
node_net = snt.Sequential(...)
```

```
# aggregate incoming effects by a sum, or average
aggregated_effects = tf.unsorted_segment_sum(effects,
        edges[:, 1], tf.shape(states)[0])
```

```
G = (V, E) \text{ state } \mathbf{x}_v \ \forall v \in V\forall (u, v) \in E, \ \mathbf{e}_{u \to v} = f_e(\mathbf{x}_u, \mathbf{x}_v)
```

$$\forall v \in V, \ \mathbf{e}_v = \sum_{u:(u,v)\in E} \mathbf{e}_{u \to v}$$

$$\forall v \in V, \ \mathbf{x}_v \leftarrow f_n(\mathbf{x}_v, \mathbf{e}_v)$$

0

1

2

3

new states

Output Modules

graph-level output
graph_vec = tf.reduce_sum(states, axis=0)
graph_output = graph_level_network(graph_vec)
... # feed into your favorite loss

Graph-level output $\mathbf{o}_G = g_G \left(\sum_{v \in V} \mathbf{x}_v \right)$

Node-level output

$$\mathbf{o}_{v} = g_{n}\left(\mathbf{x}_{v}\right)$$

node-level output node_outputs = node_level_net(states) ... # feed into your favorite loss

Edge-level output

$$\mathbf{o}_{u,v} = g_e\left(\mathbf{x}_u, \mathbf{x}_v\right)$$

Output Modules

relational network style graph-level output

concat_states <- paired states for all (i,j) pairs
effects = effect_net(concat_states)
graph_vec = tf.reduce_sum(effects, axis=0)
graph_output = graph_level_network(graph_vec)
... # feed into your favorite loss</pre>

Relation network style graph-level output

$$\mathbf{o}_G = f_\phi \left(\sum_{i,j} g_\theta(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Conclusions

- Graph nets are a powerful model to reason on graph related structures
- There are three main categories of tasks in this domain:
 - vector to graph
 - graph to graph
 - graph to vector
- Several variants of graph nets have been proposed in the literature
- They are easy to implement!
- Sky is the limit: surprise us!!!

THANK YOU

Credits

Razvan Pascanu, Victor Bapst