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Regression Problem

Can we learn to predict a target variable 
(e.g., MEDV) by observing input features 

(e.g., CRIM, ZN, INDUS, …)?
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Regression Problem

Let’s start with a simple example … can we predict Y from X? 
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Regression Problem

Let’s start with a simple example … can we predict Y from X?

In the example 

• 𝑤0 = 15 

• 𝑤1 = 0.8 

 

𝑦 = 𝑤0 + 𝑤1𝑥

Intercept
Slope
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Regression Problem

Let’s add noise … can we still predict Y from X? 

Noisy observations
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Regression Problem

Let’s add noise … can we still predict Y from X?

• Many alternative

solutions 

Noisy observations
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Regression Problem

Let’s add noise … can we still predict Y from X? 

• Many alternative

solutions

• Linear modeling is

an assumption

Noisy observations
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Regression Problem

Let’s add noise … can we still predict Y from X? 

• Many alternative

solutions

• Linear modeling is

an assumption

Which one is the best?

Noisy observations
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Linear Regression

Given observed pairs < 𝑥𝑖 , 𝑦𝑖 >, ∀𝑖 ∈ 𝑁, find the best linear model

  

• Infinite solutions exist

• Need to define an 

optimality criterion

Noisy observations

Least Squares 
Estimation!

𝑦 = 𝑤0 + 𝑤1 𝑥
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Least Squares Regression

The Residual Sum of Squares (RSS) is used to evaluate the model. It is 

defined as the sum of the squared residues 𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖, i.e., 

Rewriting as a function of parameters

𝑤0 and 𝑤1, we obtain

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 + ⋯ + 𝑒𝑁
2

𝑅𝑆𝑆 𝑤0, 𝑤1 = ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖
2

𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖



11

Least Squares Regression

Then, the goal is to find the value of the weights / parameters 𝑤0, 𝑤1 

(sometimes named as 𝛽0, 𝛽1) which minimize the RSS

This is a function minimization problem we can solve by 

• Computing gradients ∇𝑅𝑆𝑆(𝑤) w.r.t. weights 𝑤 = [𝑤0, 𝑤1]

• solving ∇𝑅𝑆𝑆(𝑤) = 0 .

w0, 𝑤1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤0,𝑤1

𝑅𝑆𝑆 𝑤0, 𝑤1 =

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤0,𝑤1

σ𝑖=1
𝑁 𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2
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Least Squares Regression

Putting the gradient ∇𝑅𝑆𝑆(𝑤0, 𝑤1) = 0, we obtain

w0, 𝑤1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤0,𝑤1

𝑅𝑆𝑆 𝑤0, 𝑤1 =

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤0,𝑤1

σ𝑖=1
𝑁 𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

𝜕𝑅𝑆𝑆

𝜕𝑤0
= −2 ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖 = 0

𝜕𝑅𝑆𝑆

𝜕𝑤1
= −2 ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖 𝑥𝑖 = 0
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

             Example:

             A regression with 2 features [𝑥1, 𝑥2] and 1 target

             variable 𝑦. The least squares solution is a plane

             chosen by minimizing the distances between the

             observations and the plane. 

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑀𝑥𝑀 + 𝜖

𝑥2

𝑥1

𝑦
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

             

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑀𝑥𝑀 + 𝜖

𝑥2

𝑥1

𝑦

𝑅𝑆𝑆 = ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + ⋯ + 𝑤𝑀𝑥𝑖𝑀
2

= ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + ෍

𝑚=1

𝑀

𝑤𝑚𝑥𝑖𝑚

2

𝑅𝑆𝑆(𝑤) = 𝑦 − X𝑤 𝑇(𝑦 − X𝑤)
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

             

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑀𝑥𝑀 + 𝜖

𝑥2

𝑥1

𝑦
𝑦1

𝑦2

⋯

𝑦𝑁

1 𝑥11 𝑥12 ⋯ 𝑥1𝑀

1 𝑥21 𝑥22 ⋯ 𝑥2𝑀

⋯ ⋯ ⋯ ⋯ ⋯

1 𝑦𝑁1 𝑦𝑁2 ⋯ 𝑥𝑁𝑀

𝑤0

𝑤1

𝑤2

⋯

𝑤𝑀
• 𝑦 = N x 1 vector of target values
• X is a N x (M+1) data matrix
• 𝑤 is a (M+1) x 1 vector of weights

𝑅𝑆𝑆(𝑤) = 𝑦 − X𝑤 𝑇(𝑦 − X𝑤)
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Multivariate Linear Regression

Let’s compute the derivatives 

Putting the derivatives equal to zero and solving for 𝑤 we obtain

which are known as the normal equations for the least squares problem.

𝑅𝑆𝑆(𝑤) = 𝑦 − X𝑤 𝑇(𝑦 − X𝑤)

𝜕𝑅𝑆𝑆

𝜕𝑤
= −2X𝑇 𝑦 − X𝑤 𝑇

𝑤 = X𝑇X −1X𝑇𝑦

Moore-Penrose 
pseudo-inverse of X

Quadratic function, 
thus convex, thus 

unique minimum …

Quite expensive with 
many samples …
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Non linearity of data

Multivariate linear regression assumes

• Linear relationship between features and target variables

• Additive relationship between features and target variables

Linear models could not be sufficient to fit observed data as a linear 

relationship between features and target may not hold.

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑀𝑥𝑀 + 𝜖
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Generalized Linear Regression

Given a set of input variables 𝑥, a set of 𝑁 examples < 𝑥𝑖 , 𝑦𝑖 > and a set 

of D features ℎ𝑗 computed from the input variables 𝑥𝑖, we get the model

• 𝑓𝑗(. ) identify variables derived from the original inputs

• 𝑓𝑗(. ) could be derived from an existing variable, e.g., the squared 

value, a trigonometric function, the age given the date of birth, etc. 

Notes: the solution can still be computed via matrix pseudo inverse (but you get a non linear model)

𝑊 = 𝑓 𝑋 𝑇𝑓 𝑋
−1

𝑓(𝑋)𝑌

𝑦 = 𝑤0 + 𝑤1𝑓(𝑥)1 + 𝑤2𝑓(𝑥)2 + ⋯ + 𝑤𝐷𝑓(𝑥)𝐷 + 𝜖
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Polinomial Regression

Input: LSTAT - % lower status of the population

Output: MEDV - Median value of owner-occupied homes in $1000's
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Polinomial Regression

Given a set of examples associating 𝐿𝑆𝑇𝐴𝑇𝑖 

values to 𝑀𝐸𝐷𝑉𝑖 values, nonlinear regression

finds a function 𝑓 .  such that

where 𝛆i is the error to be minimized

A polynomial model would fit the data points with a function,  
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Polinomial Regression
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Polinomial Regression
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Polinomial Regression

Which one do you 

prefer?
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Coefficient of Determination 𝑹𝟐

Total sum of squares

Coefficient of determination

R2 measures of how well the regression line approximates the real data 

points. When R2 is 1, the regression line perfectly fits the data.

What about 

new data?
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Model Evaluation

Would be feasible to evaluate students using exactly the same problems 

solved in class? 

Overfitting: perfect output on the training data, 

 terrible outcome on data which has never seen before  

Models should be evaluated using data that have not been used to build 

the model itself:

• Training data will be used to build the model

• Test data will be used to evaluate the model performance
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Hold Out Evaluation

Reserves a certain amount for testing and uses the remainder for training

• Too small training sets might result in poor weight estimation

• Too small test sets might result in a poor estimation of future performance

Typically,

• Reserve 2/3 for training and 1/3 for testing (but percentage may vary)
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Hold Out Evaluation on Housing Data

Given the original dataset, split the data into 2/3 train and 1/3 test and 

then apply linear regression using polynomials of increasing degree. 
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Cross-Validation

For small or “unbalanced” datasets, Hold Out samples might not be 

representative, thus k-fold Cross-Validation can be used:

• Data is split into k subsets of equal size

• Each subset in turn is used for testing and the remainder for training

• The error estimates are averaged to yield an overall error estimate
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Cross-Validation

For small or “unbalanced” datasets, Hold Out samples might not be 

representative, thus k-fold Cross-Validation can be used:

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

test train

1 2 3 4 5 6 7 8 9 10

testtrain

2 3 4 5 6 7 8 9 10

test train

1

train

… … …

p1

p2

p10

K=10 gets accurate 

estimantes 

Sometimes 

repeated multiple 

times (e.g., 10)
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K-fold Cross-Validation on Housing Data

Given the original dataset, perform k-fold Cross-Validation on linear 

regression using polynomials of increasing degree. 
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We could have interactions between variables (or sinergies)

               Advertising dataset example

               Sales of a product in 200 markets, based

               on the advertising budgets for the product

               for 3 different media: TV, radio, newspaper.

Other non linearities: Sinergy
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We could have interactions between variables (or sinergies)

               Advertising dataset example

               Sales of a product in 200 markets, based

               on the advertising budgets for the product

               for 3 different media: TV, radio, newspaper.

Linear model underestimates red regions and overestimates yellow ones

Other non linearities: Sinergy

This effect in marketing is called sinergy, 
i.e., acting on one variable modifies the 

other variables



33

Modeling Sinergy

Let consider the classical Linear Regression model with 2 variables

• An increase in 𝑥1 of 1 unit increases 𝑦 on average by 𝑤1 units

• Presence or absence of other variables does not affect this 

We can extend the linear model with an interaction term

• Non-linearity w.r.t. the 𝑥 variables 

• Linear w.r.t. the parameters 𝑤 

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝜖

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝜖
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Modeling Sinergy

We can extend the linear model with an interaction term

• Non-linearity w.r.t. the 𝑥 variables 

• Linear w.r.t. the parameters 𝑤 

This translates in a linear model by adding a new variable 𝑥3 = 𝑥1𝑥2 

We can use the same training algorithms for linear regression!

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝜖

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝜖
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Checking for non linearities

Use residuals plot to check if the linearity assumption does not hold

Try to use non-linear transformations, 
e.g., log 𝑥 , 𝑥2, 𝑥
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Non-Constant Variance of Error Term

Linear Regression assumes no heteroscedasticity in the noise

This might not be true, and the variance is a function 𝜎^2 (𝑥) of the data

• this effect is called heteroscedasticity 

• if we have a constant 𝜎^2 we have instead homoscedasticity 

𝑦 = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑁𝑥𝑁 + 𝜖 with 𝜖~𝒩 0, 𝜎2

constant
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Non-Constant Variance of Error Term



38

Outliers, residual plot, and studentized residuals



39

Outliers, residual plot, and studentized residuals

It can alter the metrics. For instance in the example
RSE is 1.09 when the outlier is included in the 

regression, but it is only 0.77 when it is removed.
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High Leverage Points (unusual x)

Easy to observe with only one feature
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High Leverage Points (unusual x)

Easy to observe with only one feature
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High Leverage Points (unusual x) The value of the high leverage point is in 
the range of each individual feature’s
values, but it is an high leverage point
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High Leverage Points (unusual x) The value of the high leverage point is in 
the range of each individual feature’s
values, but it is an high leverage point

The leverage of an observation is computed via the leverage statistic

ℎ𝑖 =
1

𝑛
+

𝑥𝑖 − ҧ𝑥 2

σ𝑖′=1
𝑛 𝑥𝑖′ − ҧ𝑥 2

which is always between
1

𝑛
and 1
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Colinearity

Colinearity happens when two variables are highly correlated

If two variables are correlated, it can be difficult to estimate the relationship between 

each variable separately with the response 

Credit dataset example

• Limit and Age variables do not

show a correlation

• Limit and Credit Rating variables

instead show a marked correlation

𝑦 = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑁𝑥𝑁 + 𝜖

𝑦 = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑁𝑥𝑁 + 𝜖

Check for correlation 

and remove variables 

or use PCA …
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Improved Linear Regression

We can devise alternative procedures to least squares

• Improve prediction accuracy: if number of data is limited (or p is big) we might 

have “low bias” but too “high variance” (overfitting) and a poor prediction

• Improve model interpretability: irrelevant variables, beside impacting on 

accuracy, make models unnecessary complex and difficult to interpret

Several alternatives to remove unnecessary features (predictors)

• Subset Selection: selection of the input variables

• Shrinkage (or regularization): reduction of model variance

• Dimension reduction: projection on an input subspace 
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Shrinkage Methods: Ridge Regression

Ordinary Least Squares (OLS) minimizes 

Ridge Regression minimizes a slightly different function

• 𝜆 ≥ 0 is a tuning parameter to be estimated experimentally

• 𝜆 σ𝑚=1
𝑀 𝑤𝑚

2  is called shrinkage penalty

• as 𝜆 → ∞ parameters shrink to zero

𝑅𝑆𝑆 = ෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + ෍

𝑚=1

𝑀

𝑤𝑚𝑥𝑖𝑚

2

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + ෍

𝑚=1

𝑀

𝑤𝑚𝑥𝑖𝑚

2

+ λ ෍

𝑚=1

𝑀

𝑤𝑚
2 = 𝑅𝑆𝑆 + λ ෍

𝑚=1

𝑀

𝑤𝑚
2
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Shrinkage Methods: Ridge Regression
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Shrinkage Methods: Ridge Regression

We should standardize our data before 
learning a ridge regression model! 
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Shrinkage Methods: The Lasso

It is an alternative to the ridge regression

• 𝜆 ≥ 0 is a tuning parameter to be estimated experimentally

• λ σ𝑚=1
𝑀 |𝑤𝑚| is called lasso penalty

• as 𝜆 → ∞ parameters shrink to zero

It forces some of the coefficients to be exactly zero, it performs variable 

selection …

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 + ෍

𝑚=1

𝑀

𝑤𝑚𝑥𝑖𝑚

2

+ λ ෍

𝑚=1

𝑀

|𝑤𝑚| = 𝑅𝑆𝑆 + λ ෍

𝑚=1

𝑀

|𝑤𝑚|
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Shrinkage Methods: Lasso
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