Data Analysis for Smart Agriculture
- Regression -

Prof. Matteo Matteucci — matteo.matteucci@polimi.it



Regression Problem

Boston house prices dataset

- CRIM
- ZN

- INDUS
- CHAS
- NOX

- AGE

- DIS

- RAD

- TAX

- PTRATIO
- B

- LSTAT

- MEDV

per capita crime rate by town
proportion of residential land zoned for lots over 25,800 sq.ft.
proportion of non-retail business acres per town

Charles River dummy variable (= 1 if tract bounds river; @ otherwise)
nitric oxides concentration (parts per 1@ million)

average number of rooms per dwelling _ Can we learn to predict a target variable
proportion of owner-occupied units built prior to 1940 . .

weighted distances to five Boston employment centres (e.g., MEDV) by observmg Inputfeatures
index of accessibility to radial highways

full-value property-tax rate per $10,000 (e.g., CRIM/ ZN/ INDUS/ )?

pupil-teacher ratio by town
1e@@(Bk - ©.63)"2 where Bk 1s the proportion of black people by town

% lower status of the population ..
Median value of owner-occupied homes in $1008°s

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 0.00632 180 231 0.0 0.538 6.575 652 4.0900 1.0 296.0 15.3 396.90 498 24.0
1 002731 0.0 7.07 0.0 0469 6421 789 49671 20 2420 17.8 396.90 9.14 216
2 002729 00 7.07 0.0 0469 7.185 61.1 49671 20 2420 17.8 392.83 403 347
3 003237 00 218 0.0 0458 6.998 458 6.0622 3.0 222.0 18.7 394.63 294 334
4 006905 00 218 0.0 0458 7.147 542 6.0622 3.0 2220 18.7 396.90 533 36.2
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Regression Problem

Let's start with a simple example ... can we predict Y from X7
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Regression Problem

Let's start with a simple example ... can we predict Y from X7

40

—_—15+08X +€
Yy =Wy + WX *
/ \ 30
Slope 25
Intercept
> 20

15

In the example
¢ Wgo = 15
¢ W1 — 08 ’
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Regression Problem

Let's add noise ... can we still predict Y from X?

40 * Noisy observations
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Regression Problem

Let's add noise ... can we still predict Y from X?

40 * Noisy observations

°  Many alternative &
solutions
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Regression Problem

Let's add noise ... can we still predict Y from X?

40 * Noisy observations
*  Many alternative .
solutions 30
° Linear modeling is .
an assumption
= 20
15 =
10 -
5
0 i} 5 10 15 20
K

{7) POLITECNICO MILANO 1863




Regression Problem

Let's add noise ... can we still predict Y from X?

0 # Noisy observations
°  Many alternative &
solutions " « o
* Linear modeling is ) . " C
an assumption —
> 20 P ., .
Which one is the best? ' :
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Linear Regression

Given observed pairs < x;,y; >, Vi € N, find the best linear model

40 * Noisy observations

V=Wyt+WiX

35

* Infinite solutions exist 30

*  Need to define an 25
optimality criterion

Least Squares
Estimation!
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Least Squares Regression

The Residual Sum of Squares (RSS) is used to evaluate the model. It is
defined as the sum of the squared residues e; = y; — ¥;, i.e,

40

RSS =ef +es+ -+ e T e =yi— 9

g

30

25

Rewriting as a function of parameter
wo and wq, we obtain

20

15

N
2
RSS(W(),W]_) — Z(yl - (WO + Wlxi))
=1
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Least Squares Regression

Then, the goal is to find the value of the weights / parameters wy, wy
(sometimes named as fy, 1) which minimize the RSS

Wy, W; = argmin RSS(wy, wy) =
Wo,W1

. 2
= argmin %iL, (vi — (Wo + wixy))
Wo,W1q
This is a function minimization problem we can solve by

* Computing gradients VRSS(w) w.rt. weights w = [wg, wq |
° solving VRSS(w) = 0.
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Least Squares Regression

Wo, W; = argmin RSS(wy, wy) =
Wo,W1

| 2
= argmin Y=, (vi — (Wo + wyx;))
Wo,W1

Putting the gradient VRSS (wy, w;) = 0, we obtain

N
JORSS
RS oS Gt wyr) =0
Wy :
=1
ORSS u
5 = —2 z(%’ — (wo + W1xi))xi =0
W1 i=1
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

V=Wy+WiX; +WyXy, + -+ WyXxy + €

Example:

A regression with 2 features [xq,x,] and 1 target
variable y. The least squares solution is a plane
chosen by minimizing the distances between the
observations and the plane.
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

V=Wy+WiX; +WyXy, + -+ WyXxy + €

N
2
RSS = z(yi — (Wo + wyixj; + woxip + - + WMxiM))
=1

RSS(w) = (y —Xw)" (y — Xw)
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Multivariate Linear Regression

Suppose to have M features, then the multivariate regression problem is

V=Wy+WiX; +WyXy, + -+ WyXxy + €

Y1 1 | X11 X122 = Xim
V2 1 | X210 X2 =+ Xapm Wq
W»
YN 1 |ynv1e Ynz 0 Xnm
WM
vy =Nx1vector of target values
e XisaNx(M+1) data matrix

e wisa(M+1)x 1 vector of weights

RSS(w) = (y —Xw)" (y — Xw)
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Multivariate Linear Regression

RSS(w) = (y — Xw)" (y — Xw)

Quadratic function,

Let's compute the derivatives thus convex, thus

JRSS
— = 2XT(y=Xw)T
aw (y w)

unique minimum....

Putting the derivatives equal to zero and solving for w we obtain
w = XTX)"1XTy
which are known as the norggal equaﬁoﬂsjor the least squares problem.

Moore-Penrose

Quite expensive with _
pseudo-inverse of X

many samples ...



Non linearity of data

Lol

V=Wy+WwWixy+WwWyxy + - +WyXxy + €

S e i

Multivariate linear regression assumes
* Linear relationship between features and target variables
* Additive relationship between features and target variables

Linear models could not be sufficient to fit observed data as a linear
relationship between features and target may not hold.
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Generalized Linear Regression

Given a set of input variables x, a set of N examples < x;,y; > and a set
of D features h; computed from the input variables x;, we get the model

y=wWo+wif(x); +wyf(x)y++wpf(x)p +e

* f;(.) identity variables derived from the original inputs

* f;() could be derived from an existing variable, e.g., the squared
value, a trigonometric function, the age given the date of birth, etc.

Notes: the solution can still be computed via matrix pseudo inverse (but you get a non linear model)

W= (FCOTFE0) T FX)Y
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Polinomial Regression

Input: LSTAT - % lower status of the population
Output: MEDV - Median value of owner-occupied homes in $1000's

60
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Polinomial Regression

Given a set of examples associating LSTAT;

values to MEDV; values, nonlinear regression | e
finds a function f(.) such that i -

MEDV; = f(LSTAT;) + ¢, 20| oo _
where g is the error to be minimized RS

A polynomial model would fit the data points with a function,

D
f(LSTAT;) = wo + Y w; x LSTAT/
j=1
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Polinomial Regression

degree = 1 : RSS = 19472.4 degree = 2 : RSS = 15347.2

0 5 10 15 20 25 30 35 40




Polinomial Regression

degree = 3 : RSS = 14615.5 degree = 4 : RSS = 13967.7

0 5 10 15 20 25 30 35 40
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Polinomial Regression

degree = 5 : RSS = 13597.0 R2=0.68 degree = 10 : RSS = 13481.3 R2=0.68

Which one do you
prefer?

——
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Coefficient of Determination R?

Total sum of squares

N
—\ 2
TSS = (y: — )
1=1
Coefficient of determination

2 __ What about
R o 1 TSS new data?

R2 measures of how well the regression line approximates the real data
points. When R is 1, the regression line perfectly fits the data.
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Model Evaluation

Would be feasible to evaluate students using exactly the same problems
solved in class?

Overfitting: perfect output on the training data,
terrible outcome on data which has never seen before ®

Models should be evaluated using data that have not been used to build
the model itself:

° Training data will be used to build the model
* Test data will be used to evaluate the model performance
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Hold Out Evaluation

Reserves a certain amount for testing and uses the remainder for training
* Too small training sets might result in poor weight estimation
* Too small test sets might result in a poor estimation of future performance

Typically,

* Reserve 2/3 for training and 1/3 for testing (but percentage may vary)

“7) POLITECNICO MILANO 1863




Hold Out Evaluation on Housing Data

Given the original dataset, split the data into 2/3 train and 1/3 test and
then apply linear regression using polynomials of increasing degree.

8000 -
0.65 -
7000 -
0.60 -
Ty
4 &
6000 - 0.55 1
0.50 -
5000 -
0.45

123 456 7 8 9101112131415 1 2 3456 7 8 9101112131415
MODEL DEGREE MODEL DEGREE
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Cross-Validation

For small or “unbalanced” datasets, Hold Out samples might not be
representative, thus k-fold Cross-Validation can be used:

* Data is split into k subsets of equal size
* Each subset in turn is used for testing and the remainder for training
° The error estimates are averaged to yield an overall error estimate
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Cross-Validation

For small or “unbalanced” datasets, Hold Out sampleggit & 10 gz aeciis

representative, thus k-fold Cross-Validation can be usé SSUmAnEes
.0

112314 > (67|38 9]10

2345678910p1

test train
1 3145678910 n
train test train

Sometimes

repeated multiple
times (e.qg., 10)
2
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K-fold Cross-Validation on Housing Data

Given the original dataset, perform k-fold Cross-Validation on linear
regression using polynomials of increasing degree.

degree = 5 : RS5 = 13597.0 R2=0.68

100000 T T T T T T ED
90000 |- | 50
80000 |- §
40
,, 70000t 1 =
N EBD
& 60000 | 1 =
50000 | | 207
40000 - \ | o
30000 , ' . . . . 0 - - - - - - -
0 2 a4 6 8 10 12 14 0 5 10 15 20 25 30 35 40

MODEL DEGREE LSTAT




Other non linearities: Sinergy

We could have interactions between variables (or sinergies)

+ Sales

Advertising dataset example

Sales of a product in 200 markets, based
on the advertising budgets for the product
for 3 different media: TV, radio, newspaper.

—Radio
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Other non linearities: Sinergy

We could have interactions between variables (or sinergies)

+ Sales

Advertising dataset example

Sales of a product in 200 markets, based
on the advertising budgets for the product
for 3 different media: TV, radio, newspaper.

This effect in marketing is called sinergy,
i.e., acting on one variable modifies the
~ Radio other variables
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Modeling Sinergy

Let consider the classical Linear Regression model with 2 variables
VY =Wy+ WXy +WyX, + €

* Anincrease in x; of T unit increases y on average by wy units
*  Presence or absence of other variables does not affect this

We can extend the linear model with an interaction term

Y =Wy + WiX{ +WyXy, + W3X1X, + €

* Non-linearity w.rt. the x variables
° Linear w.rt. the parameters w
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Modeling Sinergy

We can extend the linear model with an interaction term

= Wqa + WiX1 + WoXo + WaX X> + E
0 141 242 3A142

* Non-linearity w.rt. the x variables
° Linear w.rt. the parameters w

This translates in a linear model by adding a new variable x3 = x1x,

= Wn + WiX1 + WoXo + WaXs + €
0 141 242 343

We can use the same training algorithms for linear regression!
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Checking for non linearities

Use residuals plot to check if the linearity assumption does not hold

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
S 4
o 0 _ 334 32?
o | >
2 - -
m —
g v 8
E =
2 o . 2 ©7
o o
: o
7 : |
) o
. . ) e —
Try to use non-linear transformations, '
e.g., log(x), x?,/x o 2 -
T T I T T I T T I T T
5 10 15 20 25 30 15 20 25 30 35
Fitted values Fitted values
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Non-Constant Variance of Error Term

Linear Regression assumes no heteroscedasticity in the noise

y=wy+wix; + ..+twyxy +€  withe~N(0,02%)

constant

This might not be true, and the variance is a function ¢”2 (x) of the data
* this effect is called heteroscedasticity
* if we have a constant 6”2 we have instead homoscedasticity
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Non-Constant Variance of Error Term

Response Y Response log(Y)

.
o
N
S A
& o

g g 3

3 3 o

3 8 o

o o« I
<
& -
I
©
T 1 6710

0437
o
l | T T T T T T T T |
10 15 20 25 30 24 26 2.8 3.0 3.2 3.4
Fitted values Fitted values

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.
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Outliers, residual plot, and studentized residuals

200 o - 200
~ —
)
(1]
™ — .E <+ —
w [7:]
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% oo o § o
e 7 @) = O 0 0
8 OOGDO 7] 'e)
o o @@) __________ Od%) ______ 5 % I 6)% QCXIDOO&) ....................
n O O
o o © o o~ O
| | I | | | I | | |
-2 0 2 4 6 -2 0 2 4 6
X Fitted Values Fitted Values

FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of

6; typically we expect values between —3 and 3.
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Outliers, residual plot, and studentized residuals

Residuals

It can alter the metrics. For instance in the example
RSE is 1.09 when the outlier is included in the
regression, but it is only 0.77 when it is removed.

200
O 0 o)
_______ ‘9@600@006%0
8% 083 0© o
0 0]
O o O

Fitted Values

Studentized Residuals

200

Fitted Values

FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between —3 and 3.
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High Leverage Points (unusual x)

Easy to observe with only one feature

\ 410 & w - 20
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c
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T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25
X X1 Leverage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo2 wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.
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High Leverage Points (unusual x)

Easy to observe with only one feature
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FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo2 wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.
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ngh Leverage POlntS (Unusual X) The value of the high leverage point is in

the range of each individual feature’s
values, but it is an high leverage point

A
w {0520 \
o T
[}
3 o - 410
7]
@
o 3 S
- J—
c
()]
2 o-
)
T %)
O
T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25
X X1 Leverage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo2 wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.
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High Leverage Points (unusual x)

The value of the high leverage point is in
the range of each individual feature’s
values, but it is an high leverage point

A
w - 020
v Y \
©
3 o - 410
-
= 3
N
QN
w
9 = %)
O
| | | | | |
0.00 0.05 0.10 0.15 0.20 0.25
X Leverage
The leverage of an observation is computed via the leverage statistic /
FIG B = l_l_ (x; —x , while 20 is not.
1 — n ‘ 2 .
The no Yo (e —x with observation
. 1 :
41 rd which is always between ~ and 1 s of its X1 value

or i1ts X2 wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.
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Colinearity

Colinearity happens when two variables are highly correlated

Credit dataset example

8 5 ° Limit and Age variables do not
O show a correlation

° Limit and Credit Rating variables
instead show a marked correlation

Age
1 L | I
© o
0 O
OoogDo(BO
©o
@
Rating
400 600 800
| L 1

30 40 50 60 70 80

\
200
l

2000 4000 6000 8000 12000 2000 4000 6000 8000 12000
Limi Limit Check for correlation
y = W1Xq and remove variables
or use PCA ...
y =

T two variables are correlated, it can be difficult to estimate the relationship between
each variable separately with the response
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Improved Linear Regression

We can devise alternative procedures to least squares

* Improve prediction accuracy: if number of data is limited (or p is big) we might
have “low bias” but too "high variance” (overfitting) and a poor prediction

* Improve model interpretability: irrelevant variables, beside impacting on
accuracy, make models unnecessary complex and difficult to interpret

Several alternatives to remove unnecessary features (predictors)
* Subset Selection: selection of the input variables
* Shrinkage (or regularization): reduction of model variance
* Dimension reduction: projection on an input subspace
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Shrinkage Methods: Ridge Regression

Ordinary Least Squares (OLS) minimizes

2
N M
RSS = z Vi — | Wo + WmXim
i=1 m=1

Ridge Regression minimizes a slightly different function

N M ’ M M
z y; — Wo"‘Zmeim) +}\ZW7%1=RSS+7\ZW72n
- m=1

i=1 m=1 m=1

°* A= 0isatuning parameter to be estimated experimentally
o AXM__ w2 is called shrinkage penalty
° as A — oo parameters shrink to zero
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Shrinkage Methods: Ridge Regression

Standardized Coefficients

S -"‘n.H —— Income
~ - - - Limit
S - TS e Rating
N ~ - Student
= N
o . .
o | et *,
\'t
o | T mr=mrm == - N,
o - ~ .,
— ~ ) \1.
o .‘,.o""'--""-::'__'-.__
=
o
T
=
=
{'IT-‘ | [ |
1e-02 1e+00 1e+02 1e+04
A
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Shrinkage Methods: Ridge Regression

S | T T~. — Income S _ )
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@ «© | e N, o « -
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T 8 _ . T 8._
S T o M
o @
We should standardize our data before -
(o]
learning a ridge regression model! T | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

A 185 112/11812
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Shrinkage Methods: The Lasso

It is an alternative to the ridge regression

N M 2 M M
z Vi — | wo + szxim +7\2 lwy, | =RSS+7\2 (W, |
m=1 m=1

i=1

° A= 0isatuning parameter to be estimated experimentally
o AXM_ |w,,| is called lasso penalty
° as A — oo parameters shrink to zero

It forces some of the coefficients to be exactly zero, it performs variable
selection ...
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Shrinkage Methods: Lasso
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