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Abstract
An accurate way to measure the performance of a brain-computer interface (BCI) is im-

portant to compare different analysis methods and different protocols. The decision of which
BCI and what parameters to use should take into consideration the expected performance.
Information transfer rate has been proposed as a benchmark, but existing information-based
metrics measure the channel capacity of the BCI classifier, which may be much higher than
what a BCI achieves in practice. Therefore, we introduce a novel task-oriented approach
to the measuring of BCI performances, which takes into account how all the components of
the BCI and the user interact. We apply it to the case of a P300 speller and show how the
information transfer rate may be misleading. Moreover, we determine when the introduction
of an automatic error-correction method is advantageous for a given user. This shows that
our approach can be used to compare BCI variants.

1 Introduction

A brain-computer interface (BCI) [1] is an interface that does not entail muscle movements, but
it bypasses any muscle or nerve mediation and connects a computer directly with the brain by
picking up the brain activity signals. This simple definition hides two relevant issues: how fast it
is possible to communicate with such an interface, and how often errors are made. These issues
are obviously related since the communication speed highly depends on the error rate of the BCI.

An accurate way to measure a BCI performance is important to compare different analysis
methods and different protocols. If many BCIs or many variants are available to a user, the
decision of which one to use should take into consideration the expected performance for that user
(other aspects, which are important, are not the focus of this work). To this aim, the measurement
of the performance should be tailored to each specific BCI. For example, there are ongoing studies
to introduce automatic correction systems in BCIs [2] based on error potentials (ErrPs), which are
specific variations in the EEG induced by the subjective recognition of a committed mistake [3].
Such systems may have false positives, and hence introduce new errors; so, the evaluation of the
opportunity of their introduction in a BCI requires the estimation of the potential improvement
in the performance of the particular BCI. Intuitively, if the reliability of the ErrP detector is poor,
the introduction of ErrP-based corrections will cause more damages than benefits.

In the literature, the performance of a BCI has been quantified by using different metrics, such
as classification accuracy, information transfer rate, letters or words per minute, kappa statistic,
and others. Among them, the information transfer rate (sometimes simply called bit rate) has
been proposed as a benchmark for the evaluation of BCI performances because it does not depend
on any particular protocol, it takes into account both the number of choices and time needed, and
it could be applied also to continuous ranges of choices [4]. A formula for the information transfer
rate is derived in [5] to compute the (mean) number of bits transferred per trial:

B = log2 N + p log2 p + (1− p) log2

1− p

N − 1
, (1)
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where N is the number of possible choices per trial, and p is the accuracy of the BCI, i.e., the
probability that the BCI selects what the user intends. Equation (1) divided by the trial duration
gives the mean number of bits transferred per time unit. This formula is derived from Shannon’s
theory [6], and it represents a measure of the mutual information between the user’s choice and
the BCI selection, under the assumption that all choices convey the same amount of information
(i.e., they are chosen by the user with equal probability), p is the same for all the possible choices,
and that all the wrong choices have the same probability in case of error. In other words, a BCI
system is seen as a noisy channel, in which the selection of a wrong option is the noise.

According to Shannon’s noisy channel coding theorem [6], it is possible to achieve an arbitrarily
small error probability in a communication on a noisy channel as long as the information transfer
rate does not go beyond a certain limit (the channel capacity). The channel capacity is given by the
mutual information, and this seems to justify the use of mutual information in Equation (1). The
only problem is that Shannon proved his famous theorem by transferring information embedded in
ever increasing blocks of bits, and in telecommunication practice only very complex error correction
schemes have permitted to get near Shannon’s limit. For a BCI, where a human subject sits at one
end of the noisy channel, it is not possible to implement such complex error correction schemes,
and thus the limit given by the mutual information, as in Equation (1), represents a theoretical
figure, unreachable by any real BCI whose error rate is significantly different from zero.

To better understand how far from practice can be the performance measure of Equation (1),
let us focus on a simple example with a standard P300 speller [7], where the P300 is used to select
letters in matrix of 36 symbols. Let us suppose that the speller speed is 4 letters per minute,
and that a user achieves a performance of 45% in accuracy, which is low, but still far better than
random-level accuracy (2.7%). By substituting p = 45% and N = 36 in Equation (1), we get
B = 1.36 bits, and the information transfer rate for this user would be 4 · B = 5.4 bits/min; this
is not very fast, but, still, communication should be possible. Now let us look at the practical
use of such a BCI: the most natural way would be to move on to the next letter when the speller
gets one right, and to “hit” backspace every time the speller is wrong. What is the real transfer
rate for this speller? Since every letter is more likely to be wrong than not, and this happens to
backspace as well, the expected time to spell a letter correctly is infinite, and thus the answer is,
on average, exactly 0 bits/min (see also the derivation of Equation (7) in the next section). While
it could be still possible to raise p above .5 by increasing the number of stimulations per letter and
render the P300 speller of the example usable, the channel capacity measured by Equation (1)
promises a performance far beyond what is attainable once the details of the BCI are taken into
account. For this reason, we propose that the measure of the performance of a BCI, e.g., the
information transfer rate, takes into account not only the behavior of the classifier contained in
the BCI, but how all the components of the BCI and the user interact to perform the task the
BCI is designed for.

There exists a generalization of formula (1) that makes use of the confusion matrix and allows
each letter to have a different probability of occurrence and a different accuracy [8], but such
formula has the same shortcoming of (1), i.e., it treats the BCI as a communication channel with
no reference to the way the channel is actually used, and it has a huge number of parameters.
In order to keep the exposition simpler, we have chosen to limit the discussion to the simplified
formula. All our considerations can be easily extended to the general formula as well.

In the next section we show how the idea of a task-oriented approach to performance measure-
ment can be applied to a P300 speller, and we compare it to Equation (1). In Section 3 we show
how our approach can be used to evaluate the opportunity of introducing ErrP detection in the
P300 speller. Some concluding remarks follow in Section 4.

2 Task-Related Performance Measurement

We give an example of a task-related performance measurement by deriving the performance of a
P300 speller, based on the computation of the expected time tL required to spell a letter correctly.

As explained above, we use the assumptions of Equation (1) to keep the exposition simpler;
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moreover, we assume that the accuracy of the speller p is constant and the system has no memory,
i.e., each trial is not influenced by the result of the previous one. If c is the time duration of every
single trial, the expected time to correctly spell a letter is

tL = p · c + (1− p) · (c + tB + t
(1)
L ) = c + (1− p) · (tB + t

(1)
L ) , (2)

where the term p · c is the contribution of the case where the letter is correctly spelled at the first
attempt, while the second term represents the case where the letter is wrong, so a backspace must
be entered (which takes tB time) and the letter respelled (t(1)L time). As the system is stationary,
we obviously have t

(1)
L = tL. In addition, as the backspace should be treated as any other symbol,

tB = tL (this can be derived formally). We can rewrite Equation (2) in an iterative formulation

tL = c + 2 · (1− p) · tL , (3)

which leads to
tL =

c

2p− 1
. (4)

This relationship is valid only when 2p− 1 > 0, i.e., p > 0.5; when p ≤ 0.5, it should be apparent
from the expanding of (2) or (3) that the expected time to correctly spell a letter goes to infinite.

Using Equation (4), we can compute the information transfer rate for our P300 speller. This
can be obtained as the ratio between the information contained in an ever growing number of
symbols spelled and the time taken to spell them:

IR = E

[
lim

K→∞

b ·K∑K
i=1 c · ni

]
, (5)

where b is the information content (in bits) of one spelled symbol, and ni is the number of trials
needed to spell correctly the i-th symbol. Since

lim
K→∞

∑K
i=1 c · ni

K
= E[c · n] = tL , (6)

and it holds b = log2(N − 1) bits, Equation (5) can be rewritten as

IR =
b

tL
=

(2p− 1) · log2(N − 1)
c

. (7)

Only N − 1 symbols can appear in real words (the backspace cannot), and we are measuring the
information contained in the spelled text, therefore the assumption of equal probability leads to
the value of log2(N − 1) bits.

This expression represents the expected performance of our speller, and we can compare it
with the theoretical limit derived from Equation (1):

IT =
B

c
=

log2 N + p log2 p + (1− p) log2
1−p
N−1

c
. (8)

Figure 1 compares the two measures of information transfer rates and shows how the effective
performances can be far from the theory. In fact, while the (8) measures the capacity of a channel,
i.e., the maximum performance obtainable by a noisy channel, the (7) measures the expected
performance of the same channel when information is conveyed in a specific way; in our case, this
is the natural way of using a P300 speller. As expected, the latter curve lies always below the
theoretical limit, and it is equal to zero when the accuracy is too low. For high accuracy values,
the two curves almost coincide.

It is worth noting that the graph may evidence regions in where the channel cannot work (when
p ≤ 0.5, in our case) and also areas where differences are very far from the theoretical limit.
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Figure 1: Comparison between theoretical and practical information transfer rate for a P300 speller
with 36 symbols.

3 Performance Measurement with Error Detection

We now make use of the previous result to measure the improvement of the performance gained
when an error-correction capability (based on ErrP detection) is added to our P300 speller. With
the new feature added, the speller works as follows: it selects a letter by means of P300 detection
and displays it on the screen; if an error is recognized, the latest letter is canceled, while if no
error is detected, the latest letter is kept.

To derive the performance of this new system, we need to define the performance of the error-
correction system. We characterized it with two parameters: 1. the recall for errors (rE, the
fraction of times that an actual error is recognized by the error classifier), and 2. the recall for
correct trials (rC, the fraction of times that a correctly spelled letter is recognized by the error
classifier). We assume that rE and rC are constant and do not depend on the actual letter.

For each trial, four possible cases can happen, which are listed in Table 1. Each case occurs
with a certain probability, and the expected time to correctly spell a letter obviously varies case
by case. Both the probability and the expected time are reported in the table. The expected
time to spell a letter correctly can be computed as in Equation (2) by summing the time required
by each case weighted by their respective probabilities:

tL = p1 · c + p2 · (c + tB + tL) + p3 · (c + tL) + p4 · (c + tL)
= p · rC · c + (1− p) · (1− rE) · (c + tB + tL) + p · (1− rC) · (c + tL) + (1− p) · rE · (c + tL) , (9)

where c is the constant duration of a trial, as before. Reasoning as in the previous section, we
obtain

tL = tB =
c

p · rC + (1− p) · rE + p− 1
, (10)

Event Probability Expected time
The P300 speller selects the correct letter, and
the ErrP classifier correctly recognizes it.

p1 = p · rC c

The P300 speller selects the wrong letter, and the
ErrP classifier does not recognizes the error.

p2 = (1− p) · (1− rE) c + tB + tL

The P300 speller selects the correct letter, and
the ErrP classifier wrongly detects an error.

p3 = p · (1− rC) c + tL

The P300 speller selects a wrong letter, and the
ErrP classifier recognizes the error.

p4 = (1− p) · rE c + tL

Table 1: Probabilities and expected times for the four possible outcomes of a trial
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Figure 2: (a) Condition for the usability of a P300 speller with ErrP detection. (b) Comparison
between two P300 speller with and without ErrP detection. (c) When ErrP detection improves
the performance of a P300 speller.

where the result is valid only if the denominator is positive, i.e., when

rC >
1− p

p
(1− rE) . (11)

Figure 2.a shows the boundaries defined by Inequality (11) for different values of p; the inequal-
ity is satisfied for the points lying above the lines, and only in these cases the time for spelling a
letter is finite (i.e., the P300 speller can be useful). It can be noticed that the constraint becomes
tighter as p diminishes, with recall of errors becoming more and more important.

If we now compare Equation (4) with (10), we can evaluate when the error-detection system
gives any improvement to the P300 speller. In order to have an improvement, the expected time,
tL, should be lower when error detection is used; this leads to the inequality

rC >
p− 1

p
rE + 1 . (12)

Figure 2.b shows the boundaries defined by Inequality (12) for different values of p (for p < 0.5
the comparison has no sense); points above the lines represent values of rC and rE for which ErrP
detection is advantageous. In this case, as p grows the area defined by Inequality (12) shrinks;
this happens, because as p grows the performance of the P300 speller gets better and better, and
it becomes harder and harder for the ErrP classifier to improve the speller performance.

Figure 2.c summarizes the first two graphs in Figure 2, and shows the values of rC and rE for
which ErrP detection is advantageous for the whole range of p. As before, the part of the plane
above the lines is the useful part; values below the lines are either useless or counterproductive.
Figure 2.c can be used as a guide to decide to bias the ErrP classifier either toward correct or
erroneous epochs, depending on the value of p.

Some practical examples may help to better understand the above ideas. Let say that for
a particular user the P300 speller reaches 90% accuracy without error correction, and the error
detection reaches rC = rE = 83%. This situation corresponds to the cross in Figure 2.c, and
the cross lies below the line p = 90%. So, for this particular user the automatic error correction
system is counterproductive. Another user’s performance may be expressed by p = 70%, rE = 65%,
rC = 75% (the asterisk in Figure 2.c); the asterisk lies above the line p = 70%, and therefore the
automatic error correction system should help this user.

4 Conclusions

We have shown that the measure of the information transfer rate of a BCI, intended as the channel
capacity of the BCI classifier, can be highly misleading. We have proposed a task-oriented approach
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that takes into account how all the components of the BCI and the user interact, and we have
applied it to a P300-based speller. We have compared the measure obtained with our approach
to a formula for the information transfer rate that relies on a few simplifying assumptions; it is
been possible to use a more general formula with less assumptions and reach the same conclusions,
because the main shortcoming lies in the measuring of the channel capacity of the BCI classifier
and not in the simplifying assumptions used.

The results for the P300 speller have been extended to derive a formula for a speller with an
ErrP-based correction system added, and the formula has been used to assess the utility of the
correction system. The use of a task-oriented model permits to make firm observations about the
usefulness of ErrPs in a P300 speller, and to identify operating regions/settings in which a real
improvement can be obtained. Using a model strictly related to the task performed by the BCI
under study is fundamental to understand and quantify the real impact of variations of a BCI
protocol, like the introduction of ErrP-based corrections. While we have applied the proposed
approach to two specific cases, it is possible to use the same approach to study other kinds of
BCIs and the impact of the modification of other parameters, and we think this should lead to a
better comparison between different protocols.
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