Artificial Neural Networks and Deep Learning

- From Perceptrons to Feed Forward Neural Networks -

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)
Artificial Intelligence and Robotics Laboratory
Politecnico di Milano

ARTIFICIAL INTELLMGENCE AMD ROBOTICS LAB

In principle it was the Perceptron ...

71} POLITECNICO MILANO 1863

How this all started out?

Why it eventually
died out?

How came we still use
neural networks?

The inception Of Al s e

A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College
M. L. Minsky, Harvard University
N. Rochester, I.B.M. Corp

C.E. Shannon, Bell Telepho

August 31, 1955

POLITECNICO MILANO 1863

If a machine can do a job, then an automatic calculator can
be programmed to simulate the machine. The speeds and
memory capacities of present computers may be insufficient
to simulate many of the higher functions of the human brain,
but the major obstacle is not lack of machine capacity, but
our inability to write programs taking full advantage of what

we have.

3. Neuron Nets

How can a set of (hypothetical) neurons be ar-
ranged so as to form concepts. Considerable theoret-
ical and experimental work has been done on this prob-
lem by Uttley, Rashevsky and his group, Farley and
Clark, Pitts and McCulloch, Minsky, Rochester and
Holland, and others. Partial results have been ob-

tained but the problem needs more theoretical work.

*

5) Self-Improvement -]

Probably a truly intelligent machine will carry out ;

A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLI

We propose that a 2 month, 10 man study of artificial intelligence

carried out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre
cisely described that a machine can be made to simulate it. An attempt will be

made to find how to make machines use language, form abstractions and concep

solve kinds of problems now reserved for humans, and improve themselves. We

think that a significant advance can be made in one or more of these problems if

a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

activities which may best be described as self-improve-
ment. Some schemes for doing this have been proposed

and are worth further study. It seems likely that this

question can be studied abstractly as well.

6) Abstractions -
- A number of types of "abstraction' can be distinctly ..

defined and several others less distinctly. A direct
ts,
attempt to classify these and to describe machine

methods of forming abstractions from sensory and other

data would seem worthwhile.

Let's go back to 1940s ...

Computers were already good at

* Doing precisely what the programmer
programs them to do

* Doing arithmetic very fast

However we would have liked them to:

° Interact with noisy data or directly
with the environment

* Be massively parallel and fault tolerant
* Adapt to circumstances

Researchers were seeking a computational model
beyond the Von Neumann Machine!

LITECNICO MILANO 1863

The Brain Computationa Model

The human brain has a huge number of computing units:
* 10" (one hundred billion) neurons

* 7,000 synaptic connections to other neurons

* In total from 10" to 5 x 10™ (100 to 500 trillion) in adults
to 10™ synapses (1 quadrillion) in a three year old child

The computational model of the brain is:
* Distributed among simple non linear units
* Redundant and thus fault tolerant
* Intrinsically parallel

Perceptron: a computational model based on the brain!

[i77)) POLITECNICO MILANO 1863

Computation in Biological Neurons

Cell body

Axon

Axon hillock
i

Golgi apparatus
Endoplasmic
reticulum

P
Mitochondrion Dendrite

J \ Dendritic branches

} POLITECNICO MILANO 1863

Telodendria

Synaptic terminals

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:
* Dendrites collect charges from synapses, both Inhibitory and Excitatory
* Cumulates charge is released (neuron fires) once a Threshold is passed

~7) POLITECNICO MILANO 1863

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:
* Dendrites collect charges from synapses, both Inhibitory and Excitatory
* Cumulates charge is released (neuron fires) once a Threshold is passed

OLITECNICO MILANO 1863

Who did it first?

Several researchers were investigating models for the brain

° In 1943, Warren McCullog and Walter Harry Pitts
proposed the Treshold Logic Unit or Linear Unit,
the activation function was a threshold unit
equivalent to the Heaviside step function

* In 1957, Frank Rosemblatt developed the first
Perceptron. Weights were encoded in potentiometers,
and weight updates during learning were performed
by electric motors

* In 1960, Bernard Widrow introduced the idea of
representing the threshold value as a bias term
in the ADALINE (Adaptive Linear Neuron or later
Adaptive Linear Element)

i The Mark | Perceptron 3

~7) POLITECNICO MILANO 1863

What can you do with it?

Perceptron as

Logical OR
“ wy; =1 hor(Wy + W11- X1+ w, - xp) =
1 0 0 0 =h0R(—§+ x1+x2)=
1 0 1 1
1 1 0 1 _J)L if <—%+x1+x2>>0
R 1 @ 0, otherwise

hanp(Wo + Wy - X1 + Wy - Xp) =

3
= hAND <—2 + = X1 + x2> =
hanp (x[w) 2

3
_ 1, lf (—2+§x1+x2>>0

0, otherwise

Perceptron as

Logical AND

LITECNICO MILANO 1863

Hebbian Learning

"The strength of a synapse increases according to the simultaneous

activation of the relative input and the desired target”
(Donald Hebb, The Organization of Behavior, 1949)

Start from a random

Hebbian learning can be summarized by the follow; initialization

wktt = wk + Aawk ®
k _ ., k.
AWi =N xi tk...
Where we have: Fix the weights one sample
ere we a < at the time (online), and
° 1. learning rate only if the sample is not

correctly predicted

* xk: the ith perceptron input at time k
* tk: the desired output at time k

[L77) POLITECNICO MILANO 1863

Perceptron Example

* Start from random weights, e.q.,
w=1[111]
° (Chose a learning rate, e.qg,,
n=20.>5
* (Cycle through the records by
fixing those which are not correct

* End once all the records are correctly predicted

Does the procedure converge?
Does it always converge to the same sets of weights?

OLITECNICO MILANO 1863

Perceptron Math

A perceptron computes a weighted sum, returns its Sign (Thresholding)
hi(x|w) = h]-(Z{:OWi - x;) = Sign(wg + wy - x1 + -+ w; - xp)

It is basically a linear classitier for which the decision boundary is the

hyperplane wo+wy-x;++w-x; =0
A
. . X
In 2D, this turns into i
) @
—_ N
W0+W1‘X1+W2‘x2 = ()
Wz‘Xz =_WO_W1‘X1
WO W1 W0+WTX =0
Xop = ——"—"———"—""X1

Boolean Operators Linear Boundaries

The previous boundary explains how the Perceptron implements the
Boolean operators

o s s] O EIEIEIETE
1 0 0 -1 1 0 0 -1

A A
*2 1 0 1 1 *2 1 0 1 1
¢ o 1 1 0 1 4 © 1 1 0 1
1 1 1 1 1 1 1 1

°
®
o What’s about it? We
had already Boolean
operators

/) POLITECNICO MILANO 1863

What can't you do with it?

What if the dataset we want to learn does not have a linear separation boundary

X2
m Marvin Minsky, Seymour Papert
“Perceptrons: an introduction to |
1 0 0 -1 computational geometry” 1969.

b
_ Perceptrons

1 0 1 1
1 1 0 1
1 1 1 1
9 —

The Perceptron does not work any more and we need alternative solutions
* Non linear boundary
* Alternative input representations

The idea behind Multi
Layer Perceptrons

POLITECNICO MILANO 1863

What can’t you do with it?

Topology

Type of
Decision Region

XOR Problem

Classes with
Meshed Regions

Most General
Region Shapes

Half bounded
by hyperplanes

®

OLITECNICO MILANO 1863

Convex Open or
Clesed Regions

Unfortunately Hebbian

learning does not work

any more....

Arbitrary Regions
(Complexity limited by
the number of nodes)

I_UyL.l I Ci LLFLI Uihio

FQEd Forwa rd Neu ral Netwo rk Non-linear model characterized by the

number of neurons, activation
functions, and the values of weights.

Activation
functions must be
differentiable

The output of a neuron depends
only on the previous layers
, O = IO -1 yr®
through weights W1 = {Wj(il) L {h] (W= W)}

Layers are connected

7} POLITECNICO MILANO 1863

Which Activation Function?

Sigmoid and Tanh
used. in Classification

3.0 g , ‘ >
2.0k T — .

N S W o L o L
I SN S B —
0.0k o SRS SR A]
| A S E—— . T R —05L o, A S, S— S
10k __________________ N T 1ok S H— S S S
—1.5k Y SR _______________ _______________ _______________ _______________ —15k

—2.0F e 2.0 . R R o] —2.0F IR

—as5b.. T e R L o5k T SN S—— T

_3'0 1 I 1 L I N i N | N X 1 1 1 L Il
=3 -2 -1 0 1 2 3 13 -2 -1 0 1 2 3 -3 —2 -1 0 1 2 3

Linear activation function Sigmoid activation function Tanh activation function

_ 1 exp(a) — exp(—a)

g’(a) =a g(a) = 1+ exp(—a) 9(a) = exp(a) + exp(—a)
gla)=1 g'(@) = g(@)(1 - g(a)) g'(@) =1-g(a)?

LITECNICO MILANO 1863

Output Layer in Regression and Classification

In Regression the output spans the whole R domain:
* Use a Linear activation function for the output neuron

In Classification with two classes, chose according to their coding:
° Two classes {Qy = —1,Q, = +1} then use Tanh output activation

* Two classes {Qy = 0,Q; = 1} then use Sigmoid output activation

(it can be interpreted as class posterior probability) «One h.Ot»
encoding

o
e ®
When dealing with multiple classes (K) use as many neuron as classes

* (lasses are coded as {Qy, =1001],Q, =[010],Q, =[100]}
exp(z) _ exp(; wiejh(Zf wjixi))
2k €Xp(Z) Zlk<=1 eXp(Zj ijhj(Z{ wji-xi))

* QOutput neurons use a softmax unit yy =

) POLITECNICO MILANO 1863

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network
with S shaped activation functions can approximate
any measurable function to any desired degree of
accuracy on a compact set ”

Universal approximation theorem
(Kurt Hornik, 1991) >

Images from Hugo Larochelle’s DL Summer School Tutorial

Regardless the function we are learning, a single layer can represent it:
* Doesn't mean a learning algorithm can find the necessary weights!
* In the worse case, an exponential number of hidden units may be required
* The layer may have to be unfeasibly large and may fail to learn and generalize

Classification requires just one extra layer ...

[L77) POLITECNICO MILANO 1863

Optimization and Learning

Recall about learning a model in regression and classification

hi(x, WD)

* Given a training set Q“
g(x|w

/(
* We want to find the model parameters
such that for new data
oy
£

}I(an) ~ ty

* In case of a Neural Network this
can be rewritten as 00 For this you can minimize

g(xnlw) ~ t, E= Zg(tn = g(xn|W))2

OLITECNICO MILANO 1863

Sum of Squared Errors

Z S

th — g(xn|w) gl
pab | ’ g(xn|w)
g w0 _ \ |
= ‘ :
n . S
o £ '
- 7 & =3 :
e
b
o —
| | | | Linear model which minimizes
0 50 100 150

E = YN(tn — glrnlw))

[L77) POLITECNICO MILANO 1863

Non Linear Optimization 101

To find the minimum of a generic function, we compute the partial
derivatives of the function and set them to zero

oJ](w)

=0
ow

Closed-form solutions are practically never available so we can use

iterative solutions:

J(w)
* Initialize the weights to a random value

° |terate until convergence

~7) POLITECNICO MILANO 1863

A

/ __— Gradient

i
4
7
/]

Gradient descent - Backpropagation

Use multiple reastarts to seek
for a proper global minimum.

Finding the weighs of a Neural Network is a g

N
argmin,, E(w) = Z(tn —g(x,w))? EWw)
n=1

We iterate from a initial configuration

It depends on where
we start from

TECNICO MILANO 1863

Gradient Descent Example

91(xn|w) = g4 Wl(Jz-) - hy ij(il) "Xin
j=0 j=0

N
EW) =) (tn = 100, W)’
n=1

(1)
Compute the w;;

Gradient Descent Example

J
2 1
91(xn|w) = g4 Zwl(j) - hy zW,(l) "Xin

Jj=0 Jj=0

Using all the data
points (BATCH) might
__ be unpractical
(1) N »®

aE(W)) /]
L =2 z(t" — 910, W) g5 Gt WIW; 7 1) (Z Wi xim) &
n

<.
Il
o

OLITECNICO MILANO 1863

Gradient Descent Variations

Batch gradient descent

PEwW) 1 iaE(xn, w)
ow N ow
n

Use a single sample,

unbiased, but with

Stochastic gradient descent (SGD) 8 fiign vasianes
OE(w) 0Escp(w) OE(xp,w)

ow N ow B ow Use a subset of
Mini-batch gradient descent smples, good trads o

_ variance-computation

e ®
GEwW) O0Eyp(w) 1 N OE(®nw)
ow ow M z ow

neEMinibatch

OLITECNICO MILANO 1863

Gradient Descent Example

J
2 1
91(xn|w) = g4 Zwl(j) - hy zW,(l) "Xin

Jj=0 J=0

N
Ew) =) (tn — g1 Ctn,w)?
n=1

Can | make it
automatic?

N ®

OF (w;;))
](ll) = —2 Z(tn — 91 (xn» W))gi (xn; W)Wl(JZ-) h]’- <z Wj(l-l) ~ xi,n> X;
aWji n iz

OLITECNICO MILANO 1863

Backpropagation and Chain Rule (1)

Updating the weights can be done in parallel, locally, and it requires just
two passes ...
* Let x be areal number and two functions f:R >R and g:R - R

* Consider the composed function z = f(g(x)) = f(y) where y = g(x)
* The deivative of f w.rt. x can be computed applying the chain rule

dz dzdy
- dya = 90 =1(9@)g' @)
The same holds for backpropagation
(1) N J
oE(w;; 7)) ,
I (1) —2 z(tn _ gl(xnt W)) "J1 (xn: W) Wl(]) hj (Z Wj(il) 'xi,n> " X
ii 7) i=0
OF OF 0g(tn,w) Owr () oh;(.) ow " x;

: 1
ow® dg(xn, w) aw(]Z)h (.) oh;(.) aWj(i)xi aWj(il)

Backward pass

Forward pass

) N)
0E(w;))

Jt — / (2) ! (D)

aW(l) = —2 Z(tn _ gl(xn; W)) "91 (xn; W)) le) h] (Z VVJ-i . xi’n> * X

Ji n]=O

LITECNICO MILANO 1863

Gradient Descent Example

J
2 1
91(xn|w) = g4 Zwl(j) - hy zW,(l) "Xin

Jj=0 J=0

N
E(w) =) (tn = 91.Cn, W))?
n=1 ¢

OLITECNICO MILANO 1863

A Note on Maximum Likelihood Estimation

Let's observe i.i.d. samples from a Gaussian distribution with known o2

, , 1 _(x—w)?
X1, X9, v, Xy ~ N(U,0%) p(x|u, 0?) = ane 202

A This hypothesis makes

p(X) .
the most of the points

likely to be observed

This point is very
unlikely under the RED
hypothesis

This point is very
unlikely under the
GREEN hypothesis

) POLITECNICO MILANO 1863

A Note on Maximum Likelihood Estimation

Let's observe i.i.d. samples from a Gaussian distribution with known o2

, , 1 _(x—w)?
X1, X9, v, Xy ~ N(U,0%) p(x|u, 0?) = ane 202

A This hypothesis makes
the most of the points
~ likely to be observed

p(X)

X

Maximum Likelihood: Chose parameters which maximize data probability

TECNICO MILANO 1863

Maximum Likelihood Estimation: The Recipe

T .
Let 8 = (64,0, ...,6,) a vector of parameters, find the MLE for 6:
* Write the likelihood L = P(Data|@) for the data

* [Take the Iogarithm of likelihood 1 = log P(Data|08)] .

* Work out % or :—; using high-school calculus

* Solve the set of simultaneous equations :g 0 or aa_; 0

* Check that 8MLE is a maximum We know already about
gradient descent, let’s try

with some analitical stuff ...

To maximize/minimize the (log)likelihood you CaTr

* Analytical Techniques (i.e., solve the equations)
* Optimizaion Technigues (e.g., Lagrange mutipliers)
* Numerical Techniques (e.g., gradient descend)

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known o2

5 1 _G&-w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/%ae 2052

A

p(X)

Find the Maximum Likelihood Estimator for u

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known o2

5 1 _G&-w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/%ae 2052

* Write the likelihood L = P(Data|@) for the data
N

L(w) = p(x1, %2, .., xylu, 02) = Hp(xnlu,az) =
n=1

L1 Gaw?
— ‘ ‘ e 202
1 V2no
n=1

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known o2

5 1 _G-w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/%ae 2052

* Take the logarithm | = log P(Data|0) of the likelihood

_Gen=w)? _(xp—w)?

N N
1—[1 1

l — l() e 2-02 = 2 10 e 2-02 —_

W) 5 n=1\/2-7w oy g\/Z-na

N
1 1
=N-lo — Ex — 1)?
g\/ﬂa Z'UZn(n 2

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known o2

5 1 _G&-w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/%ae 2052

* Work out dl/06 using high-school calculus

al(u) 0 1 1 &

U z

=—| N-1I — — 2 =
du du Og\/ 2mo 207 G = 1)

N
1 0
=_T‘_252(xn u?* = Zz(xn 1)

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known o2

5 1 _G&-w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/Eae 2052

. . al
* Solve the set of simultaneous equations 5. =0
{

Let’s apply this all to
Neural Networks!

TECNICO MILANO 1863

Neural Networks for Regression

Goal: approximate a target function t having N observations

t, = g(x,|w) + €, e, ~ N(0,0%)

Statistical Learnig Framework

L0
&

(-
oY

Sales
15

10
|

g(xn|w)

ECNICO MILANO 1863

250

Neural Networks for Regression

Goal: approximate a target function t having N observations
t, = glx,|w) + €,, €, ~N(0,62) ™ t, ~N(gk,lw),c%)

(.577) POLITECNICO MILANO 1863
il

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known ¢

1 (t—gxw)”
ty, ~ N(g(xy|w),c?) p(tlg(x|w),0%) = NP 207

Write the likelihood L = P(Datal@) for the data

N
L(w) = p(ty, ty, ..., tylgx|w), 0%) = ﬂp(tnlg(xnIW),az) =
n=1

Y1 (tamgGaw)’
— 1_[e 202
n_1 \V2To

(.577) POLITECNICO MILANO 1863
il

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known ¢

1 (t—gxw)”
ty, ~ N(g(xy|w),c?) p(tlg(x|w),0%) = NP 207

Look for the weights which maximixe the likelihood |
r' 1 (tn_g(xn|W))

e 202 —

argmax,, L(w) = argmax,,

N 1 _(ta=gCenlw))” 1 1 2
= argmax,, z]()g e e 207 = argmax,, lOg \/%0' — 252 (tn — g(xnlw)) =
” \ n

N
. 2
argmin,, Z(tn _ g(xnlw))
n

OLITECNICO MILANO 1863

Neural Networks for Classification

Goal: approximate a posterior probability t having N observations
9(enw) = p(tplxyn), t, €{0,1} - t, ~ Be(g(xnlw))

Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Bernulli distribution

tn ~ Be(gGalw)) p(tlg(xlw)) = gCxlw)* - (1 - g(xIw)) ™

Write the likelihood L = P(Datal@) for the data

N
L(w) = P(tbtz» "-'tng(xlw)) = Hp(tnlg(xn|w)) =
n=1

N
— Hg(xnlw)tn ' (1 — g(xnlw))l_tn
n=1

(.577) POLITECNICO MILANO 1863
il

Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Bernulli distribution

tn ~ Be(gGalw)) p(tlg(xlw)) = gCxlw)* - (1 - g(xIw)) ™

Look for the weights which maximize the likelihood

N
1-t,
argmax,, L(w) = argmax,, ng(xn|w)tn : (1 — g(xn|W)) =

n=1

Crossentropy. J WA G T Hegl — g(x,|w)) =
N
t, lo X, |w n
Zn n gg(Tll) ... N

= tulog glealw) + (1 = t) log(1 — gxa W)

=\argmin,,

What about perceptron

OLITECNICO MILANO 1863

How to Chose the Error Function?

Sum of Squared
Errors

We have observed different error functions so f

N
Ew) =) (tn = g10tn, W))? Binary
n=1

Crossentropy.

N .0
Ew) ==) talog gCealw) + (1= t,) log(1 — g(xalw))

n

Error functions define the task to be solved, but how to design them?
* Use all your knowledge/assumptions about the data distribution

* Exploit background knowledge on the task and the model
* Use your creativity! reg

This requires |ots of As for the Perceptron ...
trial and errors ...

OLITECNICO MILANO 1863

Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) L € R?
L:wyg +wlix =0

Any two points x; and x, on L € R? have

X2

‘e,
.
.
g
0
.
.
.
.
.
0
.
.
.
.
.
.
.
.
-

wl(x; —x,) =0
The versor normal to L € R? is then

wr = w/lwl|

For any point xq in L € R? we have

wlixy = —wg

The signed distance of any point x in L € R @ s il v
1 the distance of X from the plane

«T =TT (wTx + wy) ol defined by (w'x + wy) = 0

{77) POLITECNICO MILANO 1863

Perceptron Learning Algorithm (1/2)

't can be shown, the error function the Hebbian rule is minimizing is the
distance of misclassitied points from the decision boundary.

Let’s code the perceptron output as +1/-1
* If an output which should be +1is misclassified then wx + wy < 0
* For an output with -1 we have the opposite

The goal becomes minimizing Set of points

misclassified
D(w,w,) = z wix; +wg)

IEM
This is non negative and proportional to the distance of the misclassified
points from wlx +wy =0

(77 POLITECNICO MILANO 1863

Perceptron Learning Algorithm (2/2)

Let's minimize by stochastic gradient descend the error function

D(w,wp) = =) t;(w"x; + w)

IEM
The gradients with respect to the model parameters are
oD (w,wy) z oD (w,wy) z
= — ti * X - - ti

ow , dwy, ,
IEM IEM

Stochastic gradient descent applies for each misclassified point

wk+1 s
- Hebbian learning

implements Stocastic
Gradient Descent

OLITECNICO MILANO 1863

