

V POLITECNICO DI MILANO

Matteo Matteucci – matteo.matteucci@polimi.it

A Two Layered Approach

To perform their tasks autonomous robots and unmanned vehicles need

- To know where they are (e.g., Global Positioning System)
- To know the environment map (e.g., Geographical Institutes Maps)

These are not always possible or reliable

- GNSS are not always reliable/available
- Not all places have been mapped
- Environment changes dynamically
- · Maps need to be updated

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Matteo Matteucci – matteo.matteucci@polimi.it

Localization ... with known map

Matteo Matteucci – matteo.matteucci@polimi.it

Mapping ... with known poses

Simultaneous Localization and Mapping

Dynamic Bayes Network Inference and Full SLAM

Smoothing : $p(\Gamma_{1:t}, l_1, ..., l_N | Z_{1:t}, U_{1:t})$

Dynamic Bayes Network Inference and Online SLAM

Several techniques have been studied to obtain a consistent estimate of the joint probability of pose and map

- Scan matching
- EKF SLAM / UKF SLAM
- Fast-SLAM (Particle filter based)
- Probabilistic mapping with a single map and a posterior about poses (Mapping + Localization)
- Graph-SLAM, SEIFs
- • •

We won't see the all of them! ③

Let's start with the basics! ;-)

These slides have been heavily "inspired" by the teaching material kindly provided with the book:

• **Probabilistic Robotics** by Sebastian Thrun, Dieter Fox, and Wolfram Burgard, MIT Press, 2005

Please refer to the original source for a deeper analysis and further references on the topic ...

Matteo Matteucci – matteo.matteucci@polimi.it

Given:

• Stream of observations *z* and action data *u*:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

We want to compute:

- Estimate of the state *X* of a dynamical system.
- The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

$$Bel(x_{t}) = P(x_{t} | u_{1}, z_{1} ..., u_{t}, z_{t})$$

$$z = observation$$

$$u = action$$

$$x = state$$
Bayes
$$= \eta P(z_{t} | x_{t}, u_{1}, z_{1}, ..., u_{t}) P(x_{t} | u_{1}, z_{1}, ..., u_{t})$$
Markov
$$= \eta P(z_{t} | x_{t}) P(x_{t} | u_{1}, z_{1}, ..., u_{t})$$
Total prob.
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{1}, z_{1}, ..., u_{t}, x_{t-1})$$

$$P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., z_{t-1}) dx_{t-1}$$

$$= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Matteo Matteucci – matteo.matteucci@polimi.it

Bayes Filter: The Algorithm

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Algorithm Bayes_filter(*Bel(x), d*):

η=0

If d is a perceptual data item z then

For all *x* do

$$\begin{aligned} Bel'(x) &= P(z \mid x)Bel(x) \\ \eta &= \eta + Bel'(x) \end{aligned}$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if d is an action data item u then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return Bel'(x)

Matteo Matteucci - matteo.matteucci@polimi.it

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

You might have met this filter already if you had something to do with:

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Let have a closer look at:

- Discrete filters
- Kalman filters
- Particle filters

Piecewise Constant Approximation

Matteo Matteucci – matteo.matteucci@polimi.it

Algorithm Discrete_Bayes_filter(*Bel(x),d*): h=0 If *d* is a perceptual data item *z* then For all x do $Bel'(x) = P(z \mid x)Bel(x)$ $\eta = \eta + Bel'(x)$ For all x do $Bel'(x) = \eta^{-1}Bel'(x)$ Else if d is an action data item u then For all x do $Bel'(x) = \sum P(x \mid u, x') Bel(x')$ Return *Bel'(x)*

Belief update upon sensory input and normalization iterates over all cells

- When the belief is peaked (e.g., during position tracking), avoid updating irrelevant parts.
- Do not update entire sub-spaces of the state space and monitor whether the robot is de-localized or not by considering likelihood of observations given the active components

To update the belief upon robot motions, assumes a bounded Gaussian model; reduces the update from $O(n^2)$ to O(n).

The update by shifting the data in the grid according to measured motion, then convolve the grid using a Gaussian Kernel.

Grid-based Localization

Filter complexity is exponential in the number of degrees of freedom, it can be sped up by representing density using a variant of octrees

- Efficient in space and time
- Multi-resolution

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

You might have met this filter already if you had something to do with:

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Let have a closer look at:

- Discrete filters
- Kalman filters
- Particle filters

Prediction

$$\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$$

Can we easily compute these integrals (remind η is an integral too) in closed form for continuos distributions?

Is there any continuous distribution for which this is possible?

NO

 $p(x) \sim N(\mu, \sigma^2)$:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

POLITECNICO DI MILANO

Matteo Matteucci – matteo.matteucci@polimi.it

Univariate

$$X \sim N(\mu, \sigma^{2}) \\ Y = aX + b$$
 $\Rightarrow Y \sim N(a\mu + b, a^{2}\sigma^{2})$
$$X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\ X_{2} \sim N(\mu_{2}, \sigma_{2}^{2})$$
 $\Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N \left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{2}, \frac{1}{\sigma_{1}^{-2} + \sigma_{2}^{-2}} \right)$

Multivariate

$$X \sim N(\mu, \Sigma) Y = AX + B$$
 \Rightarrow $Y \sim N(A\mu + B, A\Sigma A^T)$
$$X_1 \sim N(\mu_1, \Sigma_1) X_2 \sim N(\mu_2, \Sigma_2)$$
 $\Rightarrow p(X_1) \cdot p(X_2) \sim N \left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2} \mu_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2} \mu_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}} \right)$

Estimates the state *x* of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

with a measurement

$$z_t = C_t x_t + \delta_t$$

- A_r (n x n) describes state evolves from t to t-1 w/o controls or noise
- B_t (n x l) describes how control u_t changes the state from t to t-1
- C_t (k x n) that describes how to map the state x_t to an observation z_t
- $\mathcal{E}_t \delta_t$ random variables representing process and measurement noise assumed to be independent and normally distributed with covariance R_t and Q_t respectively.

Linear Gaussian Systems

Initial belief is normally distributed: $bel(x_0) = N(x_0; \mu_0, \Sigma_0)$

Dynamics are linear function of state and control plus additive noise:

$$x_{t} = A_{t} x_{t-1} + B_{t} u_{t} + \varepsilon_{t}$$
$$p(x_{t} | u_{t}, x_{t-1}) = N(x_{t}; A_{t} x_{t-1} + B_{t} u_{t}, R_{t})$$

Linear Gaussian Systems: Dynamics

$$\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) \cdot bel(x_{t-1}) \, dx_{t-1}$$
$$\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

$$\overline{bel}(x_t) = \eta \int \exp\left\{-\frac{1}{2}(x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1}(x_t - A_t x_{t-1} - B_t u_t)\right\}$$
$$\exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1}(x_{t-1} - \mu_{t-1})\right\} dx_{t-1}$$

$$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = A_t \mu_{t-1} + B_t u_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \end{cases}$$

Linear Gaussian Systems: Observations

Observations are linear function of state plus additive noise:

$$z_{t} = C_{t}x_{t} + \delta_{t}$$

$$p(z_{t} \mid x_{t}) = N(z_{t}; C_{t}x_{t}, Q_{t})$$

$$bel(x_{t}) = \eta \quad p(z_{t} \mid x_{t}) \quad \cdot \quad \overline{bel}(x_{t})$$

$$\sim N(z_{t}; C_{t}x_{t}, Q_{t}) \quad \sim N(x_{t}; \overline{\mu}_{t}, \overline{\Sigma}_{t})$$

$$bel(x_{t}) = \eta \exp\left\{-\frac{1}{2}(z_{t} - C_{t}x_{t})^{T}Q_{t}^{-1}(z_{t} - C_{t}x_{t})\right\} \exp\left\{-\frac{1}{2}(x_{t} - \overline{\mu}_{t})^{T}\overline{\Sigma}_{t}^{-1}(x_{t} - \overline{\mu}_{t})\right\}$$

 $bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases} \quad \text{with} \quad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1} \end{cases}$

Matteo Matteucci - matteo.matteucci@polimi.it

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

$$\frac{\mu_t}{\Sigma_t} = A_t \mu_{t-1} + B_t u_t$$
$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)

- Optimal for linear Gaussian systems ③
- Most robotics systems are nonlinear ☺

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t, Σ_t

Nonlinear Dynamic Systems

Most realistic robotic problems involve nonlinear functions

Matteo Matteucci – matteo.matteucci@polimi.it

Nonlinear Dynamic Systems

Most realistic robotic problems involve nonlinear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

Prediction:

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): $G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} \quad H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t}$

Prediction:

$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1}) \qquad \longleftarrow \qquad \mu_{t} = A_{t} \mu_{t-1} + B_{t} u_{t}$$
$$\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + R_{t} \qquad \overleftarrow{\Sigma}_{t} = A_{t} \Sigma_{t-1} A_{t}^{T} + R_{t}$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} (H_{t} \overline{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1} \longleftarrow K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - h(\overline{\mu}_{t})) \longleftarrow \mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} H_{t}) \overline{\Sigma}_{t} \longleftarrow \Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return μ_t, Σ_t

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

You might have met this filter already if you had something to do with:

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Let have a closer look at:

- Discrete filters
- Kalman filters
- Particle filters

Dynamic Bayesian Networks: [Kanazawa et al., 95]

Importance Resampling (with smoothing)

A Four Legged Example ...

This is (somehow) easy!

Draw samples from $p(x|z_i)$ using the detection parameters and some noise

Matteo Matteucci – matteo.matteucci@polimi.it

Importance Sampling with Resampling

After resampling

Matteo Matteucci – matteo.matteucci@polimi.it

Localization for AIBO robots

Algorithm **particle_filter**(S_{t-1} , u_{t-1} , z_t): $S_t = \emptyset, \quad \eta = 0$ *i*=1...*n* For Generate new samples Sample index j(i) from the discrete distribution given by w_{t-1} Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1} $w_t^i = p(z_t \mid x_t^i)$ Compute importance weight $\eta = \eta + w_t^i$ Update normalization factor $S_{t} = S_{t} \cup \{\langle x_{t}^{i}, w_{t}^{i} \rangle\}$ Insert $i=1\dots n$ For

 $w_t^i = w_t^i / \eta$

Normalize weights

Sensor Information: Importance Sampling

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

Matteo Matteucci - matteo.matteucci@polimi.it

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

71

Figure 1: (a) Minerva. (b) Minerva's motorized face. (c) Minerva gives a tour in the Smithsonian's National Museum of American History.

Using Ceiling Maps for Localization

Matteo Matteucci – matteo.matteucci@polimi.it

Vision-based Localization

Measurement z:

P(z|x):

Matteo Matteucci – matteo.matteucci@polimi.it

Measurement z:

P(z|x):

Measurement z:

P(z|x):

Matteo Matteucci – matteo.matteucci@polimi.it

Global Localization Using Vision

Matteo Matteucci – matteo.matteucci@polimi.it

Sonar Sensor Model (Ultrasound Wave)

An US wave is sent by a transducer

- Time of flight is measured
- Distance is computed from it
- Obstacle could be anywhere on the arc at distance D
- The space closer than D is likely to be free.

Lasers are definitely more accurate sensors

- 180 ranges over 180° (up to 360 in some models)
- 1 to 64 planes scanned
- 10-75 scans/second
- <1cm range resolution
- Max range up to 50-80 m

POLITECNICO DI MILANO

Matteo Matteucci – matteo.matteucci@polimi.it

The laser range finder model describe each single measurement using

The laser range finder model describe each single measurement using

Beam Based Sensor Model (III)

The laser range finder model describe each single measurement using

Monte Carlo Localization with Laser

Sample-based Localization (sonar)

Matteo Matteucci – matteo.matteucci@polimi.it

POLITECNICO DI MILANO

Matteo Matteucci – matteo.matteucci@polimi.it

A Two Layered Approach

109

Occupancy from Sonar Return

The most simple occupancy model uses

- A 2D Gaussian for information about occupancy
- Another 2D Gaussian for free space

Sonar sensors present several issues

- A wide sonar cone creates noisy maps
- Specular (multi-path) reflections generates unrealistic measurements

A simple 2D representation for maps

- Each cell is assumed independent
- Probability of a cell of being occupied estimated using Bayes theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

Maps the environment as an array of cells

- Usual cell size 5 to 50cm
- Each cells holds the probability of the cell to be occupied
- Useful to combine different sensor scans and different sensor modalities

Probability: p(occ(i, j)) has range [0,1]

- <u>Odds</u>: o(occ(i, j)) has range $[0, +\infty)$ $o(A) = \frac{P(A)}{P(\neg A)}$
- Log odds: $\log o(occ(i, j))$ has range $(-\infty, +\infty)$
 - Each cell *Cij* holds the value $\log o(occ(i, j))$
 - Cij = 0 corresponds to p(occ(i, j)) = 0.5

We will apply Bayes Law

112

- where *A* is *occ*(*i*,*j*)
- and B is an observation r = D

We can simplify this by using the log odds representation ...

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Lets consider Bayes law

•
$$o(A|B) = \frac{p(A|B)}{P(\neg A|B)} = \frac{p(B|A)P(A)}{P(B|\neg A)P(\neg A)} = \tau(B|A)o(A)$$

• $\log o(A|B) = \log \tau(B|A) + \log o(A)$

To update the log odds of a cell at distance D

• $\log o(occ(i,j) | r = D) = \log \tau(r = D | occ(i,j)) + \log o(occ(i,j))$

Assume cell C_{ij} holds $\log o(occ(i, j))$

- Let be r the measurement from the sensor
- Let D be the distance of the cell
- For each cell Cij accumulate evidence from each sensor reading

$$\tau(r = D|occ(i,j)) = \frac{p(r = D|occ(i,j))}{p(r = D|\neg occ(i,j))} \approx \frac{.06}{.005} = 12 \quad \rightarrow \quad \log_2 \tau = 3.5$$

$$\tau(r > D|occ(i,j)) = \frac{p(r > D|occ(i,j))}{p(r > D|\neg occ(i,j))} \approx \frac{.45}{.90} = .5 \quad \rightarrow \quad \log_2 \tau = -1$$

Mapping with Raw Odometry (with known poses)

Maximize the likelihood of the *i-th* pose and map relative to the *(i-1)-th* pose and map.

$$\hat{x}_{t} = \arg \max_{x_{t}} \left\{ p(z_{t} \mid x_{t}, \hat{m}^{[t-1]}) \cdot p(x_{t} \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
current measurement robot motion
map constructed so far

Calculate the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the poses and observations.

SLAM: Simultaneous Localization and Mapping

Full SLAM:

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$$

Estimates entire path and map!

Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Estimates most recent pose and map!

Integrations typically done one at a time

SLAM: Simultaneous Localization and Mapping

Full SLAM:

Integrations typically done one at a time

Map with N landmarks:(3+2N)-dimensional Gaussian

$$Bel(x_{t},m_{t}) = \begin{pmatrix} \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} \\ \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} \\ \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} \\ \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} \\ \sigma_{1l}^{2} & \sigma_{l1}^{2} & \sigma_{l1}^{2} \\ \sigma_{1l}^{2} & \sigma_{l2}^{2} & \cdots & \sigma_{l1}^{2} \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta}^{2} \\ \sigma_{\theta}^{2} & \sigma_{l1}^{2} & \sigma_{l2}^{2} & \cdots & \sigma_{l2}^{2} \\ \sigma_{1l_{N}} & \sigma_{1l_{N}} & \sigma_{l2}^{2} & \cdots & \sigma_{l2}^{2} \end{pmatrix}$$

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

$$p(x_t | u_t, x_{t-1}) = N(x_t; A_t x_{t-1} + B_t u_t, R_t)$$

Matteo Matteucci – matteo.matteucci@polimi.it

Map with N landmarks:(3+2N)-dimensional Gaussian

$$z_t = C_t x_t + \delta_t$$

$$p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)$$

Bayes Filter: The Algorithm

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Algorithm Bayes_filter(*Bel(x), d*):

η=0

If *d* is a perceptual data item *z* then

For all *x* do

$$Bel'(x) = P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if *d* is an action data item *u* then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return *Bel'(x)*

Matteo Matteucci - matteo.matteucci@polimi.it

correction

prediction

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$
$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$
Return μ_{t}, Σ_{t}

$$Bel(x_{t}, m_{t}) = \langle Bel(x_{t}, m_{t}$$

$$\begin{pmatrix} x \\ y \\ \theta \\ l_1 \\ l_2 \\ \vdots \\ l_N \end{pmatrix}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^2 & \sigma_{yl_1} & \sigma_{yl_2} & \cdots & \sigma_{yl_N} \\ \sigma_{yl_1} & \sigma_{yl_2} & \sigma_{\thetal_2} & \sigma_{\thetal_1} & \sigma_{\thetal_2} & \cdots & \sigma_{ll_N} \\ \sigma_{xl_1} & \sigma_{yl_2} & \sigma_{\thetal_2} & \sigma_{l_1l_2} & \cdots & \sigma_{l_ll_N} \\ \sigma_{xl_2} & \sigma_{yl_2} & \sigma_{\thetal_2} & \sigma_{l_ll_2} & \sigma_{l_2}^2 & \cdots & \sigma_{l_2l_N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{xl_N} & \sigma_{yl_N} & \sigma_{\thetal_N} & \sigma_{ll_N} & \sigma_{l_2l_N} & \cdots & \sigma_{l_N}^2 \end{pmatrix}$$

Approximate the SLAM posterior with a high-dimensional Gaussian

Blue path = true path **Red path** = estimated path **Black path** = odometry

Correlation matrix

Мар

Мар

Correlation matrix

Мар

Correlation matrix

Theorem:

[Dissanayake et al., 2001]

The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem:

In the limit the landmark estimates become fully correlated

Are we happy about this?

- Quadratic in the number of landmarks: $O(n^2)$
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

EKF-SLAM works pretty well but ...

- EKF-SLAM employs linearized models of nonlinear motion and observation models and so inherits many caveats.
- Computational effort is demand because computation grows quadratically with the number of landmarks.

Possible solutions

- Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]
- Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]
- Sparse extended information filters [Frese et al. 01, Thrun et al. 02]
- Thin junction tree filters [Paskin 03]
- Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]
 - Represents nonlinear process and non-Gaussian uncertainty
 - Rao-Blackwellized method reduces computation

In the general case we have

$$p(x_t, m \mid z_t) \neq P(x_t \mid z_t) P(m \mid z_t)$$

However if we consider the full trajectory X_t rather than the single pose x_t

$$p(X_t, m | z_t) = P(X_t | z_t) P(m | X_t, z_t)$$

In FastSLAM, the trajectory X_t is represented by particles $X_t(i)$ while the map is represented by a factorization called Rao-Blackwellized Filter

$$P(m \mid X_t^{(i)}, z_t) = \prod_{j}^{M} P(m_j \mid X_t^{(i)}, z_t)$$

- $P(X_t | z_t)$ through particles
- $P(m | X_t, z_t)$ using an EKF

Decouple map of features from pose ...

- Each particle represents a robot trajectory
- Feature measurements are correlated thought the robot trajectory
- If the robot trajectory is known all of the features would be uncorrelated
- Treat each pose particle as if it is the true trajectory, processing all of the feature measurements independently

Factored Posterior: Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

$$Robot path posterior (localization problem) Conditionally independent landmark positions$$

Dimension of state space is drastically reduced by factorization making particle filtering possible

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Matteo Matteucci – matteo.matteucci@polimi.it

- Rao-Blackwellized particle filtering based on landmarks
 [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- · Each particle therefore has to maintain M EKFs

Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

Update robot particles based on control u_{t-1}

Incorporate observation z_t into Kalman filters

 $O(N \cdot \log(M))$ Log time per particle

O(N)

Constant time per particle

Resample particle set

O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

N = *Number* of *particles M* = *Number* of *map* features

Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

