

A Two Layered Approach

To perform their tasks autonomous robots and unmanned vehicles need

- To know where they are (e.g., Global Positioning System)
- To know the environment map (e.g., Geographical Institutes Maps)

These are not always possible or reliable

- GNSS are not always reliable/available
- Not all places have been mapped
- Environment changes dynamically
- · Maps need to be updated

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Matteo Matteucci – matteo.matteucci@polimi.it

Localization ... with known map

Matteo Matteucci – matteo.matteucci@polimi.it

Mapping ... with known poses

Simultaneous Localization and Mapping

Dynamic Bayes Network Inference and Full SLAM

Smoothing : $p(\Gamma_{1:t}, l_1, ..., l_N | Z_{1:t}, U_{1:t})$

Dynamic Bayes Network Inference and Online SLAM

Matteo Matteucci – matteo.matteucci@polimi.it

A simple 2D representation for the map

- Each cell is assumed independent
- Probability of a cell being occupied is being estimated through the Bayes theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}$$

Maps the environment as an array of cells

- Cell sizes range from 5 to 50 cm
- Each cell holds a probability value that the cell is occupied
- Useful for combining different sensor scans, and even different sensor modalities

Sonar Sensor Model (Ultrasound Wave)

An US wave is sent by a transducer

- Time of flight is measured
- Distance is computed from it
- Obstacle could be anywhere on the arc at distance D
- The space closer than D is likely to be free.

Occupancy from Sonar Return

The most simple occupancy model uses

- A 2D Gaussian for information about occupancy
- Another 2D Gaussian for free space

Sonar sensors present several issues

- A wide sonar cone creates noisy maps
- Specular (multi-path) reflections generates unrealistic measurements

Lasers are definitely more accurate sensors

- 180 ranges over 180° (up to 360 in some models)
- 1 to 64 planes scanned
- 10-75 scans/second
- <1cm range resolution
- Max range up to 50-80 m

POLITECNICO DI MILANO

Matteo Matteucci – matteo.matteucci@polimi.it

The laser range finder model describe each single measurement using

The laser range finder model describe each single measurement using

Beam Based Sensor Model (III)

The laser range finder model describe each single measurement using

Let occ(i, j) mean cell C_{ij} is occupied, then we have

- Probability: p(occ(i, j)) has range [0,1]
- <u>Odds</u>: o(occ(i, j)) has range $[0, +\infty)$ $o(A) = \frac{P(A)}{P(\neg A)}$
- Log odds: $\log o(occ(i, j))$ has range $(-\infty, +\infty)$
 - Each cell *Cij* holds the value $\log o(occ(i, j))$
 - Cij = 0 corresponds to p(occ(i, j)) = 0.5

We will apply Bayes Law

17

- where *A* is *occ*(*i*,*j*)
- and B is an observation r = D

We can simplify this by using the log odds representation ...

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Lets consider Bayes law

•
$$o(A|B) = \frac{p(A|B)}{P(\neg A|B)} = \frac{p(B|A)P(A)}{P(B|\neg A)P(\neg A)} = \tau(B|A)o(A)$$

• $\log o(A|B) = \log \tau(B|A) + \log o(A)$

To update the log odds of a cell at distance D

• $\log o(occ(i,j) | r = D) = \log \tau(r = D | occ(i,j)) + \log o(occ(i,j))$

Assume cell C_{ij} holds $\log o(occ(i, j))$

- Let be r the measurement from the sensor
- Let D be the distance of the cell
- For each cell Cij accumulate evidence from each sensor reading

$$\tau(r = D|occ(i,j)) = \frac{p(r = D|occ(i,j))}{p(r = D|\neg occ(i,j))} \approx \frac{.06}{.005} = 12 \quad \rightarrow \quad \log_2 \tau = 3.5$$

$$\tau(r > D|occ(i,j)) = \frac{p(r > D|occ(i,j))}{p(r > D|\neg occ(i,j))} \approx \frac{.45}{.90} = .5 \quad \rightarrow \quad \log_2 \tau = -1$$

Mapping with Raw Odometry (with known poses)

Maximize the likelihood of the *i-th* pose and map relative to the *(i-1)-th* pose and map.

$$\hat{x}_{t} = \arg \max_{x_{t}} \left\{ p(z_{t} \mid x_{t}, \hat{m}^{[t-1]}) \cdot p(x_{t} \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
current measurement robot motion
map constructed so far

Calculate the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the poses and observations.

Matteo Matteucci – matteo.matteucci@polimi.it

Techniques for Generating Consistent Maps

Several techniques have been studied to obtain a consistent estimate of the joint probability of pose and map

- Scan matching
- EKF SLAM / UKF SLAM
- Fast-SLAM (Particle filter based)
- Probabilistic mapping with a single map and a posterior about poses (Mapping + Localization)
- Graph-SLAM, SEIFs
- • •

We won't see the all of them! ③

SLAM: Simultaneous Localization and Mapping

Full SLAM:

Integrations typically done one at a time

Given:

• Stream of observations *z* and action data *u*:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

We want to compute:

- Estimate of the state *X* of a dynamical system.
- The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

$$Bel(x_{t}) = P(x_{t} | u_{1}, z_{1} ..., u_{t}, z_{t})$$

$$z = observation$$

$$u = action$$

$$x = state$$
Bayes
$$= \eta P(z_{t} | x_{t}, u_{1}, z_{1}, ..., u_{t}) P(x_{t} | u_{1}, z_{1}, ..., u_{t})$$
Markov
$$= \eta P(z_{t} | x_{t}) P(x_{t} | u_{1}, z_{1}, ..., u_{t})$$
Total prob.
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{1}, z_{1}, ..., u_{t}, x_{t-1})$$

$$P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., u_{t}) dx_{t-1}$$
Markov
$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) P(x_{t-1} | u_{1}, z_{1}, ..., z_{t-1}) dx_{t-1}$$

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Bayes Filter: The Algorithm

$$Bel(x_{t}) = \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Algorithm Bayes_filter(*Bel(x), d*):

η=0

If d is a perceptual data item z then

For all *x* do

$$\begin{aligned} Bel'(x) &= P(z \mid x)Bel(x) \\ \eta &= \eta + Bel'(x) \end{aligned}$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if d is an action data item u then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return Bel'(x)

Matteo Matteucci - matteo.matteucci@polimi.it

Map with N landmarks:(3+2N)-dimensional Gaussian

$$Bel(x_{t},m_{t}) = \begin{pmatrix} \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{yl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{\theta}^{2} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{l}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{l}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{N}} & \sigma_{l_{2}l_{N}} & \cdots & \sigma_{l_{N}}^{2} \end{pmatrix}$$

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

$$p(x_t | u_t, x_{t-1}) = N(x_t; A_t x_{t-1} + B_t u_t, R_t)$$

Matteo Matteucci – matteo.matteucci@polimi.it

Map with N landmarks:(3+2N)-dimensional Gaussian

$$Bel(x_{t},m_{t}) = \begin{pmatrix} \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{yl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{\theta}^{2} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{l}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{2}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{l_{2}l_{N}} \end{pmatrix}$$

$$z_t = C_t x_t + \delta_t$$

$$p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)$$

Bayes Filter: The Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Algorithm Bayes_filter(*Bel(x), d*):

η=0

If *d* is a perceptual data item *z* then

For all *x* do

$$Bel'(x) = P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

For all x do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

Else if *d* is an action data item *u* then

For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

Return *Bel'(x)*

Matteo Matteucci - matteo.matteucci@polimi.it

correction

prediction

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

$$\mu_t = A_t \mu_{t-1} + B_t u_t$$
$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$
Return μ_{t}, Σ_{t}

$$Bel(x_{t}, m_{t}) = \langle Bel(x_{t}, m_{t}$$

$$\begin{pmatrix} x \\ y \\ \theta \\ l_1 \\ l_2 \\ \vdots \\ l_N \end{pmatrix}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^2 & \sigma_{yl_1} & \sigma_{yl_2} & \cdots & \sigma_{yl_N} \\ \sigma_{y\theta} & \sigma_{\theta}^2 & \sigma_{\theta}^2 & \sigma_{\theta}^2 & \cdots & \sigma_{\theta}^2 \\ \sigma_{\theta} & \sigma_{y\theta} & \sigma_{\theta}^2 & \sigma_{\theta}^2 & \sigma_{\theta}^2 & \cdots & \sigma_{\theta}^2 \\ \sigma_{xl_1} & \sigma_{yl_1} & \sigma_{\theta}^2 & \sigma_{l_1}^2 & \sigma_{l_2}^2 & \cdots & \sigma_{l_lN} \\ \sigma_{xl_2} & \sigma_{yl_2} & \sigma_{\theta}^2 & \sigma_{l_1}^2 & \sigma_{l_2}^2 & \cdots & \sigma_{l_lN} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{xl_N} & \sigma_{yl_N} & \sigma_{\theta}^2 & \sigma_{\theta}^2 & \sigma_{l_1N} & \cdots & \sigma_{l_N}^2 \end{pmatrix}$$

Approximate the SLAM posterior with a high-dimensional Gaussian

Blue path = true path **Red path** = estimated path **Black path** = odometry

Correlation matrix

Мар

Мар

Correlation matrix

Мар

Correlation matrix

Theorem:

[Dissanayake et al., 2001]

The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem:

In the limit the landmark estimates become fully correlated

Are we happy about this?

- Quadratic in the number of landmarks: $O(n^2)$
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

EKF-SLAM works pretty well but ...

- EKF-SLAM employs linearized models of nonlinear motion and observation models and so inherits many caveats.
- Computational effort is demand because computation grows quadratically with the number of landmarks.

Possible solutions

- Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]
- Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]
- Sparse extended information filters [Frese et al. 01, Thrun et al. 02]
- Thin junction tree filters [Paskin 03]
- Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]
 - Represents nonlinear process and non-Gaussian uncertainty
 - Rao-Blackwellized method reduces computation

Represent belief by random samples Estimation of non-Gaussian, nonlinear processes

- Monte Carlo filter
- Survival of the fittest
- Condensation
- Bootstrap filter
- Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] Computer vision: [Isard and Blake 96, 98]

Dynamic Bayesian Networks: [Kanazawa et al., 95]

$$Bel (x_t) = \eta \ p(z_t | x_t) \int p(x_t | x_{t-1}, u_{t-1}) \ Bel (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow draw \ x^i_{t-1} \ from \ Bel(x_{t-1})$$

$$\rightarrow draw \ x^i_t \ from \ p(x_t | \ x^i_{t-1}, u_{t-1})$$

$$\rightarrow Importance \ factor \ for \ x^i_t:$$

$$w_t^i = \frac{\text{target distributi on}}{\text{proposal distributi on}}$$
$$= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$$
$$\propto p(z_t \mid x_t)$$

A Four Legged Example ...

Matteo Matteucci – matteo.matteucci@polimi.it

This is (somehow) easy!

Draw samples from $p(x|z_i)$ using the detection parameters and some noise

$$p(x \mid z_1)$$

$$p(x \mid z_2)$$

$$p(x \mid z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k \mid x) - p(x)}{p(z_1, z_2, ..., z_n)}$$
Sampling distributi on $g: p(x \mid z_1) = \frac{p(z_1 \mid x)p(x)}{p(z_1)}$

$$p(z_1, z_2, ..., z_n)$$

$$p(x \mid z_1) = \frac{p(z_1 \mid x)p(x)}{p(z_1)}$$

$$p(z_1, z_2, ..., z_n)$$

$$p(x \mid z_1) = \frac{p(z_1 \mid x)p(x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

After resampling

Matteo Matteucci – matteo.matteucci@polimi.it

Localization for AIBO robots

Monte Carlo Localization with Laser

Sample-based Localization (sonar)

Matteo Matteucci – matteo.matteucci@polimi.it

In the general case we have

$$p(x_t, m \mid z_t) \neq P(x_t \mid z_t) P(m \mid z_t)$$

However if we consider the full trajectory X_t rather than the single pose x_t

$$p(X_t, m | z_t) = P(X_t | z_t) P(m | X_t, z_t)$$

In FastSLAM, the trajectory X_t is represented by particles $X_t(i)$ while the map is represented by a factorization called Rao-Blackwellized Filter

$$P(m \mid X_t^{(i)}, z_t) = \prod_{j}^{M} P(m_j \mid X_t^{(i)}, z_t)$$

- $P(X_t \mid z_t)$ through particles
- $P(m | X_t, z_t)$ using an EKF

Decouple map of features from pose ...

- Each particle represents a robot trajectory
- Feature measurements are correlated thought the robot trajectory
- If the robot trajectory is known all of the features would be uncorrelated
- Treat each pose particle as if it is the true trajectory, processing all of the feature measurements independently

Factored Posterior: Rao-Blackwellization

Dimension of state space is drastically reduced by factorization making particle filtering possible

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Matteo Matteucci – matteo.matteucci@polimi.it

- Rao-Blackwellized particle filtering based on landmarks
 [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- · Each particle therefore has to maintain M EKFs

Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

Update robot particles based on control u_{t-1}

Incorporate observation z_t into Kalman filters

 $O(N \cdot log(M))$ Log time per particle

O(N)

Constant time per particle

Resample particle set

O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

N = *Number* of *particles M* = *Number* of *map* features

Matteo Matteucci – matteo.matteucci@polimi.it

Matteo Matteucci – matteo.matteucci@polimi.it

A Two Layered Approach

56

