ACTIONLIB

ROBOTICS

i ilihy,
\\\\\\\ "y, A

POLITECNICO
MILANO 1863

WHAT ISACTIONLIB

Node A sends a request to node B to perform some task

Service Action
Small execution time Long execution time
Requesting node can wait Requesting node cannot wait
No status Status monitoring

No cancellation Cancellation

WHAT ISACTIONLIB

actionlib package is:
sort of ROS implementation of threads
based on a client/server paradigm
And provides tools to:
create servers that execute long-running tasks (that can be preempted).

create clients that interact with servers

WHAT ISACTIONLIB

Client Application Server Application
user code user code
T function calls} AC}:iDﬁ ..(ﬁ). Action callbacks . e
B Client Server <ol
callbacks)

The ActionClient and ActionServer communicate via a "ROS Action Protocol”, which is
built on top of ROS messages

CLIENT-SERVER INTERACTION

Action Interface

i 1 ROS Topics R
_______EEEH ______
cancel
Ac_tmn - S Action
Client . result Server
< feedback Fram Client
——————— From Server
. A /

CLIENT-SERVER INTERACTION

goal: used to send new goals to server

cancel: used to send cancel requests to server

status: used to notify clients on the current state of every goal in the system.
feedback: used to send clients periodic auxiliary information for a goal

result: used to send clients one-time auxiliary information upon completion of a goal

ACTION AND GOAL ID

Action templates are defined by a name and some additional properties through an
.action structure defined in ROS

Each instance of an action has a unique Goal ID

Goal ID provides the action server and the action client with a robust way to monitor
the execution of a particular instance of an action.

“\“\mum.rm,,

SERVER STATE MACHINE

”ltmu i m\\\\‘

Rec mvc Goal

setAccepted setSucceeded
PENDIMNG ACTIVE SUCCEEDED

.-,_-. Annrtrd

setRejected

C-Jr'.cl::IFtr:quc:r.t anEcIchucqt

setSuccesde

L

RECALLING)—)(FREEMPTING ABORTED)
setAccepte setAborted

(REJECTED

setRejected

set 3r‘.*‘r~|nd setCa .r-:*ll-:*d

(RECALLED

Client Triggered
a4 -

Server Triggered
gq -

(PREEMPTED)

CLIENT STATE MACHINE

% N
“ty o
" o
Hittayy ™

Send Goal

Client Triggered
——T—
Server Triggeregt

WAITING FOR
GOAL ACK

[PENDING] [ACTIVE]
Cancel Goal
PENDING [ACTIVE] ACTIVE
Cancel Goal Cancel Goal

WAITING FOR

CANCEL ACK [PREEMPTING]

[RECALLING]

[RECALLING] [PREEMPTING]

RECALLING PREEMPTING

[RECALLED] FEEE?:;;E?]
[REJECTED] [REJECTED] [SUCCEEDED]

[ABORTED]
[SUCCEEDED]

[PREEMPTING]

WAITING FOR
RESULT

Receive
Result Msg

SIMPLEACTIONSERVER/CLIENT

PENDING Send Goa
WAITING FOR
/___..-—-“‘___ GOAL ACK
e
Ca ! ACTIVE

single goal policy. r"f

PENDING

SimpleActionServer: implements a v reyoiicr NG

\
Only one goal can have an active status at \/,_ |
a time. / ~(ura
New goals preempt previous goals based | ccEEoe
on the stamp in their GoallD field. \ N
. [ABORTED]
SimpleActionClient: implements a TN A

RESULT

simplified ActionClient

Receive

Result Msg

I DONE

ACTION EXAMPLE

Define the goal

uint32 dishwasher_id # Specify which dishwasher we want to use
Define the result

uint32 total dishes cleaned

Define a feedback message

float32 percent complete

SIMPLEACTIONCLIENT

#include <chores/DoDishesAction.h>

#include <actionlib/client/simple_action client.h>

typedef actionlib::SimpleActionClient<chores: :DoDishesAction> Client;

SIMPLEACTIONCLIENT

int main(int , char**) {
ros::init(s , "do _dishes client");
Client client("do dishes", true); // true -> don't need ros::spin()
client.waitForServer();
chores: :DoDishesGoal goal;

goal.dishwasher_id = ();

SIMPLEACTIONCLIENT

client.sendGoal(goal);

client.waitForResult(ros: :Duration(5.0));

if (client.getState() == actionlib::SimpleClientGoalState: :SUCCEEDED)
ROS_INFO("Yay! The dishes are now clean");

ROS _INFO("Current State: %s\n", client.getState().toString().c_str());

return 0;

USING CALLBACKS

client.sendGoal(goal, &doneCb, &activeCb, &feedbackCb);

It is possible to add callbacks when providing a goal, to do specific action triggered by certain events

Prototypes:

void doneCb(const actionlib::SimpleClientGoalState& s
const DoDishesResultConstPtr&)

void feedbackCb(const DoDishesFeedbackConstPtr&)

void active()

SIMPLEACTIONSERVER

#include <chores/DoDishesAction.h>

#include <actionlib/server/simple_action_server.h>

typedef actionlib::SimpleActionServer<chores: :DoDishesAction> Server;

SIMPLEACTIONSERVER

void execute(const chores::DoDishesGoalConstPtr& , Server*) {
while(() {
(->dishwasher_id)
if(as->isPreemptRequested() || !ros::ok()) {
->setPreempted();
break;
}
->publishFeedback((->dishwasher_id))
}
if((->dishwasher _id) == 100)
->setSucceeded();

SIMPLEACTIONSERVER

int main(int , Char**) {
ros::init() , 'do_dishes_server");
ros: :NodeHandle n;
Server server(n, "do dishes", boost::bind(&execute, 1, &server), false);
server.start();
ros::spin();

return 9;

COMPILING

Addition in the CMakelList.txt file

find package(catkin REQUIRED genmsg actionlib _msgs actionlib)
add_action_files(DIRECTORY action FILES DoDishes.action)
generate messages(DEPENDENCIES actionlib _msgs)

Addition in the package.xml

<build depend>actionlib</build depend>
<build depend>actionlib_msgs</build depend>
<run_depend>actionlib</run_depend>

<run_depend>actionlib_msgs</run_depend>

