
ACTIONLIB
ROBOTICS

WHAT IS ACTIONLIB

Service

Small execution time

Requesting node can wait

No status

No cancellation

Action

Long execution time

Requesting node cannot wait

Status monitoring

Cancellation

Node A sends a request to node B to perform some task

WHAT IS ACTIONLIB

actionlib package is:

sort of ROS implementation of threads

based on a client/server paradigm

And provides tools to:

create servers that execute long-running tasks (that can be preempted).

create clients that interact with servers

WHAT IS ACTIONLIB

The ActionClient and ActionServer communicate via a "ROS Action Protocol", which is

built on top of ROS messages

CLIENT-SERVER INTERACTION

CLIENT-SERVER INTERACTION

goal: used to send new goals to server

cancel: used to send cancel requests to server

status: used to notify clients on the current state of every goal in the system.

feedback: used to send clients periodic auxiliary information for a goal

result: used to send clients one-time auxiliary information upon completion of a goal

ACTION AND GOAL ID

Action templates are defined by a name and some additional properties through an

.action structure defined in ROS

Each instance of an action has a unique Goal ID

Goal ID provides the action server and the action client with a robust way to monitor

the execution of a particular instance of an action.

SERVER STATE MACHINE

CLIENT STATE MACHINE

SIMPLEACTIONSERVER/CLIENT

SimpleActionServer: implements a

single goal policy.

Only one goal can have an active status at

a time.

New goals preempt previous goals based

on the stamp in their GoalID field.

SimpleActionClient: implements a

simplified ActionClient

.ACTION EXAMPLE

Define the goal

uint32 dishwasher_id # Specify which dishwasher we want to use

Define the result

uint32 total_dishes_cleaned

Define a feedback message

float32 percent_complete

SIMPLEACTIONCLIENT

#include <chores/DoDishesAction.h>

#include <actionlib/client/simple_action_client.h>

typedef actionlib::SimpleActionClient<chores::DoDishesAction> Client;

SIMPLEACTIONCLIENT

int main(int argc, char** argv) {

ros::init(argc, argv, "do_dishes_client");

Client client("do_dishes", true); // true -> don't need ros::spin()

client.waitForServer();

chores::DoDishesGoal goal;

goal.dishwasher_id = pickDishwasher();

SIMPLEACTIONCLIENT

client.sendGoal(goal);

client.waitForResult(ros::Duration(5.0));

if (client.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)

ROS_INFO("Yay! The dishes are now clean");

ROS_INFO("Current State: %s\n", client.getState().toString().c_str());

return 0;

}

USING CALLBACKS

client.sendGoal(goal, &doneCb, &activeCb, &feedbackCb);

It is possible to add callbacks when providing a goal, to do specific action triggered by certain events

Prototypes:

void doneCb(const actionlib::SimpleClientGoalState& state,

const DoDishesResultConstPtr& result)

void feedbackCb(const DoDishesFeedbackConstPtr& feedback)

void active()

SIMPLEACTIONSERVER

#include <chores/DoDishesAction.h>

#include <actionlib/server/simple_action_server.h>

typedef actionlib::SimpleActionServer<chores::DoDishesAction> Server;

SIMPLEACTIONSERVER

void execute(const chores::DoDishesGoalConstPtr& goal, Server* as) {

while(allClean()) {

doDishes(goal->dishwasher_id)

if(as->isPreemptRequested() || !ros::ok()) {

as->setPreempted();

break;

}

as->publishFeedback(currentWork(goal->dishwasher_id))

}

if(currentWork(goal->dishwasher_id) == 100)

as->setSucceeded();

}

SIMPLEACTIONSERVER

int main(int argc, char** argv) {

ros::init(argc, argv, "do_dishes_server");

ros::NodeHandle n;

Server server(n, "do_dishes", boost::bind(&execute, _1, &server), false);

server.start();

ros::spin();

return 0;

}

COMPILING

Addition in the CMakeList.txt file

find_package(catkin REQUIRED genmsg actionlib_msgs actionlib)

add_action_files(DIRECTORY action FILES DoDishes.action)

generate_messages(DEPENDENCIES actionlib_msgs)

Addition in the package.xml

<build_depend>actionlib</build_depend>

<build_depend>actionlib_msgs</build_depend>

<run_depend>actionlib</run_depend>

<run_depend>actionlib_msgs</run_depend>

