
ROBOTIC MIDDLEWARES
ROBOTICS



goo.gl/DBwhhC
MIDDLEWARE ORIGINS

The origins

1968 introduced by d’Agapeyeff

80’s wrapper between legacy systems and new 

applications

Nowadays: widespread in different domain fields 

(including Robotics)

Some (non robotics) examples: Android, SOAP, 

Web Services, …



goo.gl/DBwhhC
MIDDLEWARE ORIGINS

The Middleware idea

Well-known in software engineering

It provides a computational layer

A bridge between the application 

and the low-level details

It is not a set of API and library



goo.gl/DBwhhC
MIDDLEWARE ORIGINS

Issues in developing real robots

Cooperation between hardware and software

Architectural differences in robotics systems

Software reusability and modularity



goo.gl/DBwhhC
WHAT IS A MIDDLEWARE?

Software that connects different software 

components or applications:

Set of services that permits to several processes to 

interact

Framework used to reduce the developing time in 

complex systems.

Operating 
system

Middleware

Applications



goo.gl/DBwhhC
WHAT IS A MIDDLEWARE?

Middleware vs. Operating System

The middleware stays between software and 

different operating systems.

The distinction between operating system and 

middleware is sometimes arbitrary.

Some features of a middleware are now integrated in 

operating systems (e.g., TCP/IP stack).

Operating 
system

Middleware

Applications



goo.gl/DBwhhC
MIDDLEWARES MAIN FEATURES

Portability: provides a common programming model regardless the programming 

language and the system architecture.

Reliability: middleware are tested independently. They permit to develop robot 

controllers without considering the low level details and using robust libraries.

Manage the complexity: low-level aspects are handled by libraries and drivers inside 

the middleware. It (should) reduce(s) the programming error and decrease the 

development time.



goo.gl/DBwhhC
ROBOT DEVELOPMENT

1. Modelling

• Kinematic model

• Differential kinematics

• Dynamic model

2. Planning

• Motion laws

• Trajectory generation

3. Control

• Translate the movement into motor commands

• Several type of control: motion, force, etc.

Controller

ActuatorsSensors

Some people believe the real issue with Robotics is integration!

Before the introduction of middleware 

• Monolithic approach

• Little if any reuse of models or components

• Hard to maintain code and hard to integrate components



goo.gl/DBwhhC
ROBOT MIDDLEWARES: A LIST

Several middleware have been developed in recent years:

OROCOS [Europe]

ORCA [Europe]

YARP [Europe / Italy]

BRICS [Europe]

OpenRTM [Japan]

OpenRave [US]

ROS [US]

…

Let’s see their common features and main differences



goo.gl/DBwhhC
OROCOS: OPEN ROBOT CONTROL SOFTWARE

The project started in December 2000 from an initiative 

of the mailing list EURON then it become an European 

project with 3 partners: K.U. Leuven (Belgium), LAAS 

Toulouse (France), KTH Stockholm (Sweden)

OROCOS requirements:

Open source license

Modularity and flexibility

Not related to robot industries

Working with any kind of device

Software components for kinematics, dynamics, 

planning, sensors, controller

Not related to a unique programming language



goo.gl/DBwhhC
OROCOS STRUCTURE

Real-Time Toolkit (RTT)

infrastructure and functionalities 

for real-time robot systems

component-based applications

Component Library (OCL)

provides ready-to-use components,

e.g., device drivers, debugging tools,

path planners, task planners



goo.gl/DBwhhC
OROCOS STRUCTURE

Bayesian Filtering Library (BFL)

application independent framework, 

e.g., (Extended) Kalman Filter,

Particle Filter

Kinematics & Dynamics Library (KDL)

real-time kinematics & dynamics computations



goo.gl/DBwhhC
OROCOS RTT FRAMEWORK



goo.gl/DBwhhC
OROCOS COMPONENT



goo.gl/DBwhhC
ORCA: COMPONENTS FOR ROBOTICS

The aim of the project is to focus on software reuse

for scientific and industrial applications

Key properties:

 commonly-use interfaces

 high-level libraries

 updated software repositories

ORCA defines itself as “unconstrained component-

based system”



goo.gl/DBwhhC
ORCA AND ICE

The main difference between OROCOS and ORCA is the communication toolkit; 

OROCOS uses CORBA while ORCA uses ICE

ICE is a modern framework developed by ZeroC

ICE is an open-source commercial communication system

ICE provides two core services

IceGrid registry (Naming service): which provides the logic mapping between different components

IceStorm service (Event service): which constitute the publisher and subscriber architecture

“A component can find the other components through the IceGrid registry and can 

communicate with them through the IceStorm service.”



goo.gl/DBwhhC
ORCA: LIBRARY EVOLUTION



goo.gl/DBwhhC
RT MIDDLEWARE

RT-Middleware (RTM) is a common platform standard to 

construct the robot system by combining the software 

modules of the robot functional elements (RTC):

• Camera component

• Stereovision component

• Face recognition component

• Microphone component

• Speech recognition component

• Conversational component

• Head and arm component

• Speech synthesis component

OpenRTM-aist (Advanced Industrial Science & 

Technology) is based on the CORBA technology to 

implement RTC extended specification



goo.gl/DBwhhC
OPENRTM-AIST



goo.gl/DBwhhC
OPENRAVE: OPEN ROBOTICS AUTOMATION VIRTUAL EVNIROMENT

Proposed by Rosen Diankov provides an 

environment for testing, developing, and 

deploying motion planning algorithms in 

real-world robotics applications.



goo.gl/DBwhhC
BRICS: BEST PRACTICES IN ROBOTICS

Aimed at find out the "best practices" in the 

developing of the robotic systems:

• Investigate the weakness of robotic projects

• Investigates the integration between hardware & 

software

• Promote model driven engineering in robot 

development

• Design an Integrated Development Environment 

for robotic projects (BRIDE)

• Define showcases for the evaluation of project 

robustness with respect to BRICS principles.

“The prime objective of BRICS is to structure and formalize the robot development process itself and to provide tools, models, 

and functional libraries, which help accelerating this process significantly.”



goo.gl/DBwhhC
ROS: ROBOT OPERATING SYSTEM

Presented in 2009 by Willow Garage, is a meta-operating system for robotics with a 

rich ecosystem of tools and programs



goo.gl/DBwhhC
CONCLUSIONS

Middlewares in Robotics :

Are widely used

Component-based

Based on asynchronous communication

Implement some form of messages exchange architecture

Support different robot architectures (PR2, NAO, AIBO, ROOMBA, iCUB, etc..)

Provide libraries of existing components

Way too many…



goo.gl/DBwhhC
WHY ROS?

ROS has grown to include 

a large community of users 

worldwide

The community of 

developer is one of the 

most important 

characteristics of ROS



goo.gl/DBwhhC
A LOT OF RESOURCES

ROS Wiki

Archive for the existing ROS component

Installation and configuration guides

Information about the middleware itself

Lots of tutorials

ROS Q&A

For specific problems

Thousand of already answered questions

Active community

Like Stack Overflow for ROS



goo.gl/DBwhhC
SOME NUMBERS

ROS wiki:

pages: 17058

edits: 14,7/day

views: 44794/day

ROS Q&A:

total Q: 30243

total A: 21697

avg Q: 17,2/day

ROS deb:

total DL: 8441279

unique DL: 7582

unique IP: 113345



goo.gl/DBwhhC
ROBOT AND RESEARCH

years

n
u
m

b
e
r 

o
f 
ro

b
o
ts

Total number of papers citing

ROS: an open-source Robot 

Operating System

(Quigley et al., 2009)

2683 (+46%)


