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Abstract. In Robocup Middle-Size League (MSL) the challenge to rec-
ognize signals given by the referee by whistling has been introduced from
this year as a way to reduce the interaction via radio-link. We present
Whistle Recognizer (WR), a system able to recognize different whistling
patterns, after a relatively short training done in advance. This composite
system encompasses neural networks and more traditional information
processing techniques. It demonstrated to be quite effective and can be
easily integrated in a multi-thread control architecture, as the vast ma-
jority of those used in the league; thus, it candidates itself as a potential
off-the-shelf module to be used by MSL teams not interested in research
about signal processing and analysis.

1 Introduction

In Robocup Middle-Size League (MSL) the challenge to recognize signals given
by the referee by whistling has been introduced from this year as a way to
reduce the interaction via radio-link. Whistling has been introduced as a signal
to be detected at the end of a half: detection is not compulsory, but the teams
able to recognize this event will gain points for the challenge competition. Since
many Robocup teams are not directly interested in signal processing and whistle
analysis, an off-the-shelf package for this task would be clearly useful.

Whistle recognition has been faced in different domains to automatically de-
tect interesting events or summarize multimedia data in sport events [1].

In this paper, we present Whistle Recognizer (WR), a composite system able
to recognize different whistling patterns, after a relatively short training done in
advance. This composite system (i.e., a system encompassing neural networks
and more traditional information processing techniques [2]) is quite effective and
can be easily integrated in any thread-based control architecture, as an off-the-
shelf whistle sensor.

The tool we describe in the following sections recognizes whistle events and
patterns from a raw audio data stream. With the term “pattern” we refer to
a sequence of a predefined number of whistles at the rate of 1-2 whistles per
second; we consider this as a possible future extension to the simple start/stop
bit of information provided by a single whistle. A typical use of WR is to gather
the raw audio stream using a microphone placed on the robot body and a cheap
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sound-card; output of the system is a message sent to the controlling process
to communicate the whistle type: short single, long single, or multiple, with
multiplicity.

Since whistles and referees are different from game to game, a key issue for a
whistle recognition system is fast tuning and adaptation in order to reduce set-up
time and increase robustness. This is obtained by implementing the recognition
system using a composite approach to first extract the characteristic features
from the signal, and then applying a neural classifier to detect whistling events.
The system is integrated with a learning tool used to set recognition parameters
basing on a short recorded sample of whistle and background noise. Section 2
gives a detailed description of the system architecture and algorithms; all design
choices are explained there, while the following section gives a summary of the
learning tool.

2 System Architecture

As introduced in the previous section, the system is based on a classical digital
signal processing algorithm to extract signal features followed by a neural stage
and an event counter. Figure 1 shows the schema of this architecture. The signal
is acquired by a commercial sound-card (section 2.1) connected to a microphone;
the periodogram is computed from the raw signal by a fast algorithm to extract
features related to the spectral power of the whistle. To improve classification
capabilities, a frequency mask has been introduced to give only the interesting
samples in input to the neural stage (section 2.3). Finally, a non-linear percep-
tron (section 2.4) recognizes the presence of the whistle signal and passes this
information to an output event counter, which produces the recognition message.

2.1 Data Acquisition and Feature Extraction

Raw data is acquired from the computer sound-card and signal level is adjusted
by acting on the pre-amplifier through the IGAIN feature. Considering a whistle
power spectrum concentrated below the 4 Khz we used a sampling frequency of
8 KHz and a quantization of 8 bit/sample proved to be adequate for the job. The

Fig. 1. System architecture
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elemental block on which the system operates to detect a whistle is a 64-sample
sequence, yielding a time resolution of 8 ms.

2.2 The FFT and the Periodogram

The features used by the neural classifier are taken from the signal periodogram
and, as it can be expected, this computation is the system bottleneck; so, we
have designer it with special attention to to make it as fast as possible. Let us
consider the Discrete Fourier Transform (DFT) formula [3, 4]:

Xk =
N−1∑

n=0

xnW−nk
N (1)

where N is the number of samples, n is the time index (from 0 to N −1), k is the
frequency index (from 0 to N−1) ,WN = e−j 2π

N and Xk is an N -sample sequence
representing the original sequence xk in the frequency domain. In general, the
so-called Fast Fourier Transform (FFT) algorithm is used instead of the basic
formula, to lower the N2 complexity to N log N . This is done by subdividing the
original sequence in two sub-sequences, x2n and x2n+1, and then applying the
algorithm recursively on them. In the particular case of N power of 4, the original
sequence can be directly subdivided in 4 sub-sequences, so obtaining another 25%
improvement (0.75N log N). In this case the situation is the following:
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where Gk,Hk,Lk and Mk are the following sequences:

Gk =

N
4 −1∑

n=0

x4nW−nk
N
4

Hk =

N
4 −1∑

n=0

x4n+1W
−nk
N
4

Lk =

N
4 −1∑

n=0

x4n+2W
−nk
N
4

Mk =

N
4 −1∑

n=0

x4n+3W
−nk
N
4

Let us point out that the computation of the W matrix does not need any
multiplication, so, given Gk,Hk,Lk and Mk, the Xk sequence can be computed
performing only 3 complex multiplications (W−k

N ∗ and so on), while the standard
2-subsequences FFT algorithm will have needed 4 complex multiplications. In
doing so, we obtain a 25% gain on the total number of multiplications and this
is the most important reason to select a 64-samples sequence.

The FFT of the 64-samples sequence can be easily computed with 3 stages
of recursion. In fact, the 64-samples sequence is subdivided in 4 16-samples sub-
sequences; each 16-samples sequence is subdivided in 4 4-samples subsequences,
whose FFTs are then atomically calculated.
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To drastically reduce the average computation time, another property of the
DFT can be used: symmetry. As xn (the elemental 64-samples sequence) is
a sequence of real numbers, we can build a 64-samples sequence of complex
numbers in the following way:

sn = xn + jyn (3)

After the calculation of the FFT of sn, Sk, the Xk and Yk sequences can be
rebuilt using only sums and subtractions, by the following formulas:

�(Xk) =
1
2
[�(Sk) + �(S−k)], �(Xk) =

1
2
[�(Sk) −�(S−k)] (4)

�(Yk) =
1
2
[�(Sk) + �(S−k)], �(Xk) =

1
2
[�(S−k) −�(Sk)] (5)

This reduces by 50% the average number of multiplications, as we can get two
DFTs by applying a single FFT, and, once the FFT has been calculated, the
periodogram is given by:

Pk =
|Xk|2
64

, with k = 1, . . . , 32. (6)

2.3 Frequency Mask for Feature Selection

When the periodogram is computed, many of its samples represent frequencies
which should not be used for recognition, as they are far from the whistle power
spectrum and do not contain useful information. All these frequencies act as noise
for the classifier and should be reduced to improve classification performances.
So, the problem is: how many and which samples should be considered?

Since the whistle signal has a bandwidth of about 30÷40 Hz centered around
its average frequency and the periodogram has a resolution of fNyquist

32 = 4KHz
32 =

125Hz, a window of 3 samples can be adequate. A pure whistle signal can, in
fact, cause no more than 2 samples in the periodogram to raise, in absence of
background noise.

However, listener and source can move, and we need to face also the Doppler
effect. Suppose a stationary source is generating sound waves with frequency f
and wavelength l = v/f , being v the speed of sound. A stationary observer at
a certain distance from the source will hear a sound with pitch f . f times each
second the observer sensor will be pushed in and pulled out as pressure crest
and pressure trough reach it. The time period between two consecutive crests is
T = 1/f . Assume the observer in this case is a robot and starts driving away
from the source. Assume that at time t1 a pressure crest reaches the “robot ear”
at position x. The next crest will be at position x at time t1 + T , but the “ear”
will no longer be there. In this case the crest has to travel an extra distance
before it reaches the observer and this takes an extra time interval Δt. The
time interval between subsequent crests reaching the ear of the observer is now
T ′ = T + Δt.
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While the observer has traveled a distance Δx = vo ·(T +Δt), at speed vo, the
wave has traveled a distance Δx+l = v·(T +Δt). Therefore, using l = v/f = v·T ,
we have vo · T + vo · Δt + v · T = v · T + v · Δt, or Δt = vo · T/(v − vo). Thus,
we obtain:

T ′ = T + vo · T/(v − vo) = v · T/(v − vo), (7)

f ′ = f(v − vo)/v. (8)

The period has increased, the apparent frequency of the wave has decreased,
the pitch has decreased. If the observer is driving towards the source, then the
time interval between successive crests reaching the sensor will be shorter than
T. The apparent frequency of the sound wave reaching the observer is thus

f ′ = f(v + vo)/v. (9)

The perceived pitch of a sound wave also changes if the observer is station-
ary and the source is moving. Then the apparent frequency of the sound wave
reaching the observer when the source is moving towards him with speed vsis:

f ′′ = fv/(v − vs) (10)

Whenever the source and the observer move with respect to each other, the
wavelength of the sound reaching the ear will be Doppler shifted:

f = f ′′(v ± vo)/v = fv/(v ∓ vs) · (v ± vo)/v = f(v ± vo)/(v ∓ vs). (11)

The Doppler effect, computed with reasonable parameters (i.e., robot speed
= 5 m/s, whistle speed = 2 m/s, as worst case hypothesis), gives a frequency
shift of about 60 Hz at whistle average frequency (about 3 KHz). For this rea-
son, the observation window can be optionally extended from 3 to 5 samples to
compensate the Doppler effect.

The next problem to face is now: which frequencies should be considered?
Different whistles (or different environments) will lead to different choices of
frequencies and this calls for an adaptive system to reduce set-up time. To face
this issue, the concept of data separation has been introduced. Given a few
examples of whistle signal and background noise, these can be used to determine
which are the frequencies (i.e., the periodogram samples) that better characterize
the whistle sound and make it possible to distinguish it from the background
noise. Data separation gives a measure of how many samples can be correctly
recognized with a fixed threshold by observing a periodogram sample.

Figure 2, on the left, shows the situation for samples 21, 22, 23, and 24 of
the periodogram. Whistle examples (light gray) are obtained by transforming
sequences marked as “whistle” by a supervisor; the same applies to noise (dark
gray) examples. For each sample, all the examples are classified in two sets:
W(histle) and N(oise); so, for a generic sample, we have the situation shown in
Figure 2, on the right. Data separation (DS) for the sample k is defined as:

DSk � 1 − Wk ∩ Nk

Wk ∪ Nk
(12)
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Fig. 2. Data separation

Once DS has been calculated for all 32 periodogram samples, the 3 samples with
the highest DS values are selected and marked as “1” in the frequency mask.
All other samples are marked as “0” in the frequency mask.

2.4 Perceptron with Hysteresis and Event Counter

The inputs used in the neural classifier are 3 (or 5, if Doppler compensation is
enabled) samples of the periodogram. Being reasonable to consider low values
of these samples as belonging to noise and high values to whistle signal, we
can use a hyper-ellipsoid as separation surface for the perceptron. When the 3
(or 5) inputs identify a point internal to the hyper-ellipsoid, the sample will be
recognized as noise, otherwise it will be recognized as whistle.

To avoid spurious commutations in noise-to-whistle and whistle-to-noise tran-
sients, we have introduced hysteresis, i.e., we implemented a recurrent perceptron
that uses its previous state as switching condition. Figure 3 shows the non-linear
perceptron with hysteresis used in the system. Calling s01 the noise-to-whistle

Fig. 3. Perceptron with hysteresis
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(turn-on) threshold and s10 the whistle-to-noise (turn-off) threshold, the output
of the neuron is:

Out =

⎧
⎪⎪⎨

⎪⎪⎩

if PreviousState = −1
{

+1 if
∑32

n=0(
xn

Wn
)2 > 10

s01
10

−1 Otherwise

if PreviousState = +1
{−1 if

∑32
n=0(

xn

Wn
)2 ≤ 10

s10
10

+1 Otherwise

(13)

where +1 is the output chosen to denote whistle sound detection, and -1 is
the output corresponding to “noise”, s01 and s10 are expressed in dB and
PreviousState is the previous perceptron’s output.

During the learning procedure, thresholds s01 and s10 are forced to 0 and the
best separation surface can be found by applying the learning rule:

E = 1
2 (target − output)

Wk = Wk − γ · xk · E (14)

where γ is an appropriate learning rate, target is the desired output, as specified
by the supervisor, output is the output of the perceptron to the current sample,
and E is the error, which can be +1, 0 or -1. For instance, if the perceptron
outputs +1 (whistle) while no whistles are being blown, we have:

– outupt = +1 (The perceptron’s output)
– target = −1 (The correct output, provided by the supervisor).

This results in error E to be -1; this means that a noise point, which should be
internal to the ellipsoid, has been actually classified as external. Since Wk is the
ellipsoid radius on the k axis, it must be raised to let the ellipsoid include the
example, in order to classify it as a noise sample. This is done for those axes of
the ellipsoid (from W1 to W32) that are not filtered out by the frequency mask.

Doing the dual reasoning when error is +1, and combining the two cases, we
obtain the learning rule 14.

The perceptron output refers to the analysis of 64 samples (8 ms) of data, and
states whether this block of audio signal contains a whistle sound. Time elapsed
between two consequent readings of elementary audio blocks is customizable, and
it will be called “timestep” in the following. The perceptron is thus designed to
produce an “event” (+1:whistle or -1:noise) every timestep; more precisely, the
FFT is called once on a pair of 64-samples sequences, so we obtain a pair of
events every 2·timestep.

A “counter” module of WR has to translate the sequences of events into one
of the following messages:

– Short whistle
– Long whistle
– Multiple whistle, which multiplicity is n
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Fig. 4. A short and a long whistles Fig. 5. A triple whistle

Table 1. Settings used in the examples

Parameter V alue

ShortIfLess 30 steps
LongIfGreater 50 steps

IntervalBetween 15 steps
MinWhistleLength 5 steps

MinNoiseLength 5 steps

The following parameters, expressed in numbers of timesteps, have to be pro-
vided by the user in order to define whistle timing specifics:

– Maximum length of a short whistle (ShortIfLess)
– Minimum length of a long whistle (LongIfGreater)
– Maximum interval length between two consecutive whistles (Interval

Between)
– Minimum whistle length (shorter whistles are filtered)
– Minimum noise length (shorter noises are filtered)

Events output by the perceptron (Whistle or Noise) are accumulated into
slots, which are groups of subsequent events of the same type. Slots are repre-
sented with colored boxes in figures 4 and 5. The generated slots are accumulated
into an event stack, as shown in figures 4 and 5: each line corresponds to the
status of the stack up to the occurrence of an event of different type.

The starting slot is “noise” from a sufficiently long time (N∞). So, for in-
stance, in figure 4, we have on the first line 17 “whistle” events (represented by
the W17 block). Then, on the second line, we have the situation of the stack
once the subsequent 15 “noise” events (N15) have been detected. Due to the
settings for this example, the “W17” slot is not filtered out (17 is greater than
15, the minimum whistle length parameter), so the subsequent noise events are
accumulated up to the maximum length of an interval between two whistles in a
multiple whistle (in this example, 15), as defined by the user (see settings in Ta-
ble 1). The stack situation shown on the second line is thus recognized as a single
whistle, and the corresponding notification message is issued. Then we have the
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recognition of a long whistle. Notice that the number of noise events detected (3)
is less that the minimum required to interrupt the sequence of whistle events, so
the N3 sequence is filtered out.

Figure 5 shows a triple whistle; the number on the right is the whistle multi-
plicity. Every time a new noise event occurs and the current whistle has not to
be filtered, multiplicity is incremented; in order to save space in the stack, each
pair of whistle-noise slots is eliminated when a new whistle slot is completed (see
the 3rd and 4th row in figure 5: “W15” and “N9” slots are eliminated and the
“W27” slot becomes the second slot); the system knows how many whistles were
blown in the past, memorized as multiplicity. As with the previous example, the
correct event is notified after a “N15” slot; here, the message is the multiplicity
of the whistle.

3 The Learning Tool

A software tool is provided to let the user set system parameters and neu-
ron weights. The higher part in the tool main window (Figure 6) is a sound
recorder with two buffers: one for whistle recording and one for background noise

Fig. 6. The learning tool
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(a) (b)

(c) (d)

Fig. 7. Background noise (a) and whistle (c) signals captured from outside the field
during a match. In (b) and (d) respective periodograms are reported.

recording. This separation is a simple way to let the user be the supervisor of
the acquisition process.

The lower part of the window integrates a set of tools to control and test the
perceptron. We can see a plot of data separation (on the left), which helps the
user in the selection of the frequency mask, a section dedicated to the perceptron
learning with a 3D visualization of the separation surfaces (in the center), and
a test section (on the right).

4 Results

The system has been tested both with samples recorded from outside the field
during competitions and on the robot during execution in our laboratory in
Milano–Bovisa1. In Figure 7(a) and (c) you can notice respectively the noise
and whistle signals captured during a match in Padova during the 2003 Robocup
competition. In this case, we do not have a pure whistle signal so we trained the
recognition system using background noise and a quite noisy whistle. Even in
these conditions, the system has been able to recognize perfectly the two short
whistles and the long whistle present in the sample.

Whenever we are interested on on-board whistle recognition, we should no-
tice that the highest level of background noise is caused by the robot motors
and body, which strongly vibrates while the robot is moving. This is clear in
Figure 8(a) where noise has been captured on-board during robot operation.
1 All samples used for experimental validation in this paper are available from
http://robocup.elet.polimi.it/MRT/WR.html.
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(a) (b)

(c) (d)

Fig. 8. Background noise (a) during execution and pure whistle (c) signals captured
from the robot. In (b) and (d) respective periodograms are reported.

This results in a very strong white noise2, which could be partially lowered by
mechanically isolating the microphone from the structure. In this case, we could
acquire the pure whistle signal, reported in Figure 8(c), but it has an intensity
lower than noise. If the whistle-to-noise and noise-to-whistle thresholds are ade-
quately set, the system proved to have a good behavior in rejecting noise in this
especially adverse situation, resulting in a 70% correct classification rate.

Eventual shocks of the robot during the match are well filtered by adequately
setting the whistle and noise minimum lengths. Human voice frequencies have
been measured and they are quite distant from the whistle characteristic fre-
quency, so this kind of background noise did not cause any problem. We also
tested the system using a sample with a spurious whistle coming from a different
field and it was able to reject it.

5 Conclusions

Aim of this paper was to present the design and features of WR, a system
enabling robots to detect the sound of the referee whistle during a match. A
composite approach, based on a spectrum analyzer followed by a neural output
stage and a counter was chosen to achieve the goal providing a flexible and easily
tunable system. Particular care has been taken to design a system as simple and
fast as possible. We have also implemented a software tool to support the user
to tune the system. During the tests, the system proved to be fast and accurate,
even in presence of quite strong background noise.
2 Actually the recorded signal resemble more to a pink noise due to the low-pass effect

of the microphone.
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Another important feature to be mentioned is that the system requires a very
low CPU load; in fact, the whole process (FFT, perceptron and counter) takes
about 150 μsec to complete on a P4 2.1 MHz, while it is called, with the default
timestep, every 40 ms.
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