Methods for Intelligent Systems

Lecture Notes on Machine Learning

Matteo Matteucci

matteucci@elet.polimi.it

Department of Electronics and Information Politecnico di Milano

Matteo Matteucci C Lecture Notes on Machine Learning - p.1/??

Probability for Dataminers – Probability Basics –

Matteo Matteucci C Lecture Notes on Machine Learning - p.2/??

Probability and Boolean Random Variables

Boolean-valued random variable A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.

Examples

- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You like the "Gladiator"

Boolean-valued random variable A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.

Note: this is one of the possible definitions. We won't go into the philosophy of it!

Probability of A "the fraction of possible worlds in which A is true"

Matteo Matteucci (c) Lecture Notes on Machine Learning - p.3/??

Probability Axioms

Define the whole set of possible worlds with the label ${\tt true}$ and the empty set with ${\tt false}$:

- $0 \le P(A) \le 1$
- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Probability Axioms

Define the whole set of possible worlds with the label true and the empty set with false:

- $0 \le P(A) \le 1$
- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Matteo Matteucci C Lecture Notes on Machine Learning - p.4/??

Probability Axioms

Define the whole set of possible worlds with the label ${\tt true}$ and the empty set with ${\tt false}$:

- $0 \le P(A) \le 1$
- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Probability Axioms

Define the whole set of possible worlds with the label true and the empty set with false:

- $0 \le P(A) \le 1$
- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Theorems From the Axioms (I)

Using the axioms:

- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Proove: $P(\sim A) = P(\bar{A}) = 1 - P(A)$

Matteo Matteucci C Lecture Notes on Machine Learning - p.5/??

Theorems From the Axioms (I)

Using the axioms:

- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Proove: $P(\sim A) = P(\bar{A}) = 1 - P(A)$

Theorems From the Axioms (II)

Using the axioms:

- P(A = true) = 1; P(A = false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Proove: $P(A) = P(A \land B) + P(A \land \overline{B})$

Matteo Matteucci © Lecture Notes on Machine Learning - p.6/??

Theorems From the Axioms (II)

Using the axioms:

•
$$P(A = true) = 1; P(A = false) = 0$$

• $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Proove: $P(A) = P(A \land B) + P(A \land \overline{B})$

Multivalued Random Variables

Multivalued random variable A is a random variable of arity k if it can take on exactly one values out of $\{v_1, v_2, \ldots, v_k\}$.

We still have the probability axioms plus

- $P(A = v_i \land A = v_j) = 0$ if $i \neq j$
- $P(A = v_1 \lor A = v_2 \lor \ldots \lor A = v_k) = 1$

Matteo Matteucci C Lecture Notes on Machine Learning - p.7/??

Multivalued Random Variables

Multivalued random variable A is a random variable of arity k if it can take on exactly one values out of $\{v_1, v_2, \ldots, v_k\}$.

We still have the probability axioms plus

- $P(A = v_i \land A = v_j) = 0$ if $i \neq j$
- $P(A = v_1 \lor A = v_2 \lor \ldots \lor A = v_k) = 1$

Proove: $P(A = v_1 \lor A = v_2 \lor ... \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$

Proove: $\sum_{j=1}^{k} P(A = v_j) = 1$

Proove: $P(B \land [A = v_1 \lor A = v_2 \lor \ldots \lor A = v_i]) = \sum_{j=1}^i P(B \land A = v_j)$

Proove: $P(B) = \sum_{j=1}^{k} P(B \land A = v_j)$

Conditional Probability

Probability of A given B: "the fraction of possible worlds in which B is true that also have A true"

Matteo Matteucci C Lecture Notes on Machine Learning - p.8/??

Conditional Probability

Probability of A given B: "the fraction of possible worlds in which B is true that also have A true"

"Sometimes I've the flu and sometimes I've a headache, but half of the times I'm with the flu I've also a headache!"

Matteo Matteucci C Lecture Notes on Machine Learning - p.8/??

Conditional Probability

Probabilistic Inference

One day you wake up with a headache and you think: *"Half of the flus are associated with headaches so I must have* 50% *chance of getting the flu".*

Probabilistic Inference

One day you wake up with a headache and you think: "Half of the flus are associated with headaches so I must have 50% chance of getting the flu".

Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:

• Chain rule

$$P(A \land B) = P(A|B)P(B)$$

Bayes theorem

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:

• Chain rule

$$P(A \land B) = P(A|B)P(B)$$

Bayes theorem

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

We can have more general formulae:

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})}$$

•
$$P(A|B \wedge X) = \frac{P(B|A \wedge X)P(A \wedge X)}{P(B \wedge X)}$$

• $P(A = v_i|B) = \frac{P(B|A = v_i)P(A = v_i)}{\sum_{k=1}^{n_A} P(B|A = v_k)P(A = v_k)}$

Matteo Matteucci C Lecture Notes on Machine Learning - p.10/??

Independent Variables

Independent variables: Assume A and B are boolean random variables; A and B are independent (denote it with $A \perp B$) if and only if:

P(A|B) = P(A)

Independent Variables

Independent variables: Assume A and B are boolean random variables; A and B are independent (denote it with $A \perp B$) if and only if:

P(A|B) = P(A)

Using the definition:

• P(A|B) = P(A)

Proove: $P(A \land B) = P(A)P(B)$

Matteo Matteucci C Lecture Notes on Machine Learning - p.11/??

Independent Variables

Independent variables: Assume A and B are boolean random variables; A and B are independent (denote it with $A \perp B$) if and only if:

$$P(A|B) = P(A)$$

Using the definition:

•
$$P(A|B) = P(A)$$

Proove: $P(A \land B) = P(A)P(B)$

$$P(A \land B) = P(A|B)P(B)$$
$$= P(A)P(B)$$

Independent Variables

Independent variables: Assume A and B are boolean random variables; A and B are independent (denote it with $A \perp B$) if and only if:

P(A|B) = P(A)

Using the definition:

• P(A|B) = P(A)

Proove:P(B|A) = P(B)

Matteo Matteucci C Lecture Notes on Machine Learning - p.11/??

Independent Variables

Independent variables: Assume A and B are boolean random variables; A and B are independent (denote it with $A \perp B$) if and only if:

P(A|B) = P(A)

Using the definition:

•
$$P(A|B) = P(A)$$

 $\mathsf{Proove}: P(B|A) = P(B)$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$
$$= \frac{P(A)P(B)}{P(A)}$$
$$= P(B)$$

Probability for Dataminers – Information Gain –

Information and Bits

Your mission, if you decide to accept it, will be:

"Transmit a set of independent random samples of X over a binary serial link."

Matteo Matteucci C Lecture Notes on Machine Learning - p.13/??

Matteo Matteucci C Lecture Notes on Machine Learning - p.12/??

Information and Bits

Your mission, if you decide to accept it, will be:

"Transmit a set of independent random samples of X over a binary serial link."

1. Starring at *X* for a while, you notice that it has olny four possible values: A, B, C, D

Matteo Matteucci C Lecture Notes on Machine Learning - p.13/??

Information and Bits

Your mission, if you decide to accept it, will be:

"Transmit a set of independent random samples of X over a binary serial link."

- 1. Starring at *X* for a while, you notice that it has olny four possible values: A, B, C, D
- 2. You decide to transmit the data encoding each reading with two bits:

A = 00, B = 01, C = 10, D = 11.

Mission Accomplished!

Information and "Fewer Bits"

Your mission, if you decide to accept it, will be:

"The previous code uses 2 bits for symbol. Knowing that the probabilities are not equal: P(X=A)=1/2, P(X=B)=1/4, P(X=C)=1/8, P(X=D)=1/8, invent a coding for your transmission that only uses 1.75 bits on average per symbol."

Matteo Matteucci C Lecture Notes on Machine Learning - p.14/??

Information and "Fewer Bits"

Your mission, if you decide to accept it, will be:

"The previous code uses 2 bits for symbol. Knowing that the probabilities are not equal: P(X=A)=1/2, P(X=B)=1/4, P(X=C)=1/8, P(X=D)=1/8, invent a coding for your transmission that only uses 1.75 bits on average per symbol."

1. You decide to transmit the data encoding each reading with a different number of bits:

A = 0, B = 10, C = 110, D = 111.

Mission Accomplished!

Information and Entropy

Suppose X can have one of m values with probability

 $P(X = V_1) = p_1, \dots, P(X = V_m) = p_m.$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from *X*'s distribution?

Matteo Matteucci C Lecture Notes on Machine Learning - p.15/??

Information and Entropy

Suppose X can have one of m values with probability

$$P(X = V_1) = p_1, \dots, P(X = V_m) = p_m.$$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from *X*'s distribution?

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$

= $-\sum_{j=1}^m p_j \log_2 p_j = Entropy \text{ of } X$

Information and Entropy

Suppose X can have one of m values with probability

 $P(X = V_1) = p_1, \dots, P(X = V_m) = p_m.$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from *X*'s distribution?

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$

= $-\sum_{j=1}^m p_j \log_2 p_j = Entropy \text{ of } X$

"Good idea! But what is entropy anyway?"

Matteo Matteucci © Lecture Notes on Machine Learning - p.15/??

Entropy: "What is it anyway?"

Just for you to know it might be useful to review a couple of formulas to be used in calculation:

- $\ln x \times y = \ln x + \ln y$
- $\ln \frac{x}{y} = \ln x \ln y$
- $\ln x^y = y \times \ln x$
- $\log_2 x = \frac{\ln x}{\ln 2} = \frac{\log_{10} x}{\log_{10} 2}$
- $\log_a x = \frac{1}{\log_b a}$
- $\log_2 0 = -\infty$ (the formula is no good for a probability of 0)

Matteo Matteucci C Lecture Notes on Machine Learning - p.16/??

Useful Facts on Logarithms

Just for you to know it might be useful to review a couple of formulas to be used in calculation:

- $\ln x \times y = \ln x + \ln y$
- $\ln \frac{x}{y} = \ln x \ln y$
- $\ln x^y = y \times \ln x$
- $\log_2 x = \frac{\ln x}{\ln 2} = \frac{\log_{10} x}{\log_{10} 2}$
- $\log_a x = \frac{1}{\log_b a}$
- $\log_2 0 = -\infty$ (the formula is no good for a probability of 0)

Now we can practice with a simple example!

Matteo Matteucci C Lecture Notes on Machine Learning - p.17/??

Specific Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Suppose we are interested in predicting output \boldsymbol{Y} from input \boldsymbol{X} where

- *X* = University subject
- Y = Likes the movie "Gladiator"

Specific Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Suppose we are interested in predicting output \boldsymbol{Y} from input \boldsymbol{X} where

- *X* = University subject
- Y = Likes the movie "Gladiator"

From this data we can estimate

- P(Y = Yes) = 0.5
- P(X = Math) = 0.5
- P(Y = Yes | X = History) = 0

Matteo Matteucci C Lecture Notes on Machine Learning - p.18/??

Specific Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Suppose we are interested in predicting output Y from input X where

- X = University subject
- *Y* = Likes the movie "Gladiator"

Definition of Specific Conditional Entropy:

- H(Y|X=v): the entropy of *Y* only for those records in which *X* has value *v*
 - \circ H(Y|X=Math) = 1
 - H(Y|X=History) = 0

Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Definition of Conditional Entropy H(Y|X):

- The average Y specific conditional entropy
- Expected number of bits to transmit Y if both sides will know the value of X
- $\sum_{j} P(X = v_j) H(Y|X = v_j)$

Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Definition of Conditional Entropy H(Y|X):

• $\sum_{j} P(X = v_j) H(Y|X = v_j)$

v_{j}	$P(X = v_j)$	$H(Y X=v_j)$
Math	0.5	1
Hystory	0.25	0
CS	0.25	0

$$H(Y|X) = ?$$

Matteo Matteucci C Lecture Notes on Machine Learning - p.19/??

Conditional Entropy

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

Definition of Conditional Entropy H(Y|X):

$$\sum_{j} P(X = v_j) H(Y|X = v_j)$$

v_j	$P(X = v_j)$	$H(Y X=v_j)$
Math	0.5	1
Hystory	0.25	0
CS	0.25	0

 $H(Y|X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5$

Good, but what about Machine Learning?

Matteo Matteucci C Lecture Notes on Machine Learning - p.19/??

Information Gain

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

I must transmit Y on a binary serial line. How many bits on average would it save me if both ends of the line knew X?

> IG(Y|X) = H(Y) - H(Y|X)= 1 - 0.5 = 0.5

> > Matteo Matteucci C Lecture Notes on Machine Learning - p.20/??

Information Gain

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

I must transmit Y on a binary serial line. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

= 1 - 0.5 = 0.5

Information Gain measures the "information" provided by X to predict \boldsymbol{Y}

This IS about Machine Learning!

Matteo Matteucci C Lecture Notes on Machine Learning - p.20/??

Relative Information Gain

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Hystory	No
Math	Yes

I must transmit Y on a binary serial line. What fraction of the bits on average would it save me if both ends of the line knew X?

 $\begin{array}{lll} RIG(Y|X) &=& (H(Y)-H(Y|X))/H(Y) \\ &=& (1-0.5)/1=0.5 \end{array}$

Well, we'll find soon Information Gain and Relative Information gain talking about supervised learning with Decision Trees ...

Why is Information Gain Useful?

Your mission, if you decide to accept it, will be: "Predict whether someone is going live past 80 years."

From historical data you might find:

- IG(LongLife | HairColor) = 0.01
- IG(LongLife | Smoker) = 0.2
- IG(LongLife | Gender) = 0.25
- IG(LongLife | LastDigitOfSSN) = 0.00001

What you should look at?

Matteo Matteucci C Lecture Notes on Machine Learning - p.22/??