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Probability for Dataminers
– Probability Basics –
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Probability and Boolean Random Variables

Boolean-valued random variable A is a Boolean-valued random variable if A
denotes an event, and there is some degree of uncertainty as to
whether A occurs.

• Examples
◦ A = The US president in 2023 will be male
◦ A = You wake up tomorrow with a headache
◦ A = You like the “Gladiator”
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Probability and Boolean Random Variables

Boolean-valued random variable A is a Boolean-valued random variable if A
denotes an event, and there is some degree of uncertainty as to
whether A occurs.

Probability of A “the fraction of possible worlds in which A is true”

Event space of all
possible worlds
[Its area is 1]

Worlds in which
A is true

[P(A)= area of oval]

Note: this is one of the possible definitions. We won’t go into the philosophy of it!
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Probability Axioms

Define the whole set of possible worlds with the label true and the empty
set with false:

• 0 ≤ P (A) ≤ 1

• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

Event space of all
possible worlds
[Its area is 1]

Worlds in which
A is true

[P(A)= area of oval]
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Probability Axioms

Define the whole set of possible worlds with the label true and the empty
set with false:

• 0 ≤ P (A) ≤ 1

• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

The Area of A can't get
any smaller than 0

[No world could ever have A true]

.
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Probability Axioms

Define the whole set of possible worlds with the label true and the empty
set with false:

• 0 ≤ P (A) ≤ 1

• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

The Area of A can't get
any bigger than 1

[All worlds will have A true]
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Probability Axioms

Define the whole set of possible worlds with the label true and the empty
set with false:

• 0 ≤ P (A) ≤ 1

• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

P(B)P(A)

P(A and B)
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Theorems From the Axioms (I)

Using the axioms:
• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

Proove: P (∼ A) = P (Ā) = 1 − P (A)
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Theorems From the Axioms (I)

Using the axioms:
• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

Proove: P (∼ A) = P (Ā) = 1 − P (A)

true = A ∨ Ā

P (true) = P (A ∨ Ā)

= P (A) + P (Ā) − P (A ∧ Ā)

= P (A) + P (Ā) − P (false)

1 = P (A) + P (Ā) − 0

1 − P (A) = P (Ā)
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Theorems From the Axioms (II)

Using the axioms:
• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

Proove: P (A) = P (A ∧ B) + P (A ∧ B̄)
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Theorems From the Axioms (II)

Using the axioms:
• P (A = true) = 1;P (A = false) = 0

• P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

Proove: P (A) = P (A ∧ B) + P (A ∧ B̄)

A = A ∧ true

= A ∧ (B ∨ B̄)

= (A ∧ B) ∨ (A ∧ B̄)

P (A) = P ((A ∧ B) ∨ (A ∧ B̄))

= P (A ∧ B) + P (A ∧ B̄) − P ((A ∧ B) ∧ (A ∧ B̄))

= P (A ∧ B) + P (A ∧ B̄) − P (false)

= P (A ∧ B) + P (A ∧ B̄)
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Multivalued Random Variables

Multivalued random variable A is a random variable of arity k if it can take on
exactly one values out of {v1, v2, . . . , vk}.

We still have the probability axioms plus
• P (A = vi ∧ A = vj) = 0 if i 6= j

• P (A = v1 ∨ A = v2 ∨ . . . ∨ A = vk) = 1
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Multivalued Random Variables

Multivalued random variable A is a random variable of arity k if it can take on
exactly one values out of {v1, v2, . . . , vk}.

We still have the probability axioms plus
• P (A = vi ∧ A = vj) = 0 if i 6= j

• P (A = v1 ∨ A = v2 ∨ . . . ∨ A = vk) = 1

Proove: P (A = v1 ∨ A = v2 ∨ . . . ∨ A = vi) =
∑i

j=1 P (A = vj)

Proove:
∑k

j=1 P (A = vj) = 1

Proove: P (B ∧ [A = v1 ∨ A = v2 ∨ . . . ∨ A = vi]) =
∑i

j=1 P (B ∧ A = vj)

Proove: P (B) =
∑k

j=1 P (B ∧ A = vj)

Matteo Matteucci c©Lecture Notes on Machine Learning – p.7/??



Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”
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Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”

P(H|F)=1/2

P(H)=1/4
H

F

P(F)=1/8

F="Having the flu"
H="Having an headache"

“Sometimes I’ve the flu and sometimes I’ve a headache, but half of the
times I’m with the flu I’ve also a headache!”
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Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”

P(H|F)=1/2

P(H)=1/4
H

F

P(F)=1/8

F="Having the flu"
H="Having an headache"

P (H|F ) =
Num. of worlds with F and H

Num. worlds with F
=

P (H ∧ F )

P (F )
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Probabilistic Inference

One day you wake up with a headache and you think: “Half of the flus are
associated with headaches so I must have 50% chance of getting the flu”.

P(H|F)=1/2

P(H)=1/4
H

F

P(F)=1/8

F="Having the flu"
H="Having an headache"

Is this reasoning correct?
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Probabilistic Inference

One day you wake up with a headache and you think: “Half of the flus are
associated with headaches so I must have 50% chance of getting the flu”.

P(H|F)=1/2

P(H)=1/4
H

F

P(F)=1/8

F="Having the flu"
H="Having an headache"

P (F |H) =
P (F ∧ H)

P (H)
=

P (H ∧ F )

P (H)
=

P (H|F ) ∗ P (F )

P (H)
=

1/2 ∗ 1/8

1/4
= 1/4
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Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:
• Chain rule

P (A ∧ B) = P (A|B)P (B)

• Bayes theorem

P (A|B) =
P (A ∧ B)

P (B)
=

P (B|A)P (A)

P (B)
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Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:
• Chain rule

P (A ∧ B) = P (A|B)P (B)

• Bayes theorem

P (A|B) =
P (A ∧ B)

P (B)
=

P (B|A)P (A)

P (B)

We can have more general formulae:

• P (A|B) = P (B|A)P (A)
P (B|A)P (A)+P (B|Ā)P (Ā)

• P (A|B ∧ X) = P (B|A∧X)P (A∧X)
P (B∧X)

• P (A = vi|B) = P (B|A=vi)P (A=vi)
PnA

k=1
P (B|A=vk)P (A=vk)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A ⊥ B) if and only if:

P (A|B) = P (A)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A ⊥ B) if and only if:

P (A|B) = P (A)

Using the definition:
• P (A|B) = P (A)

Proove:P (A ∧ B) = P (A)P (B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A ⊥ B) if and only if:

P (A|B) = P (A)

Using the definition:
• P (A|B) = P (A)

Proove:P (A ∧ B) = P (A)P (B)

P (A ∧ B) = P (A|B)P (B)

= P (A)P (B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A ⊥ B) if and only if:

P (A|B) = P (A)

Using the definition:
• P (A|B) = P (A)

Proove:P (B|A) = P (B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A ⊥ B) if and only if:

P (A|B) = P (A)

Using the definition:
• P (A|B) = P (A)

Proove:P (B|A) = P (B)

P (B|A) =
P (A|B)P (B)

P (A)

=
P (A)P (B)

P (A)

= P (B)
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Probability for Dataminers
– Information Gain –
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Information and Bits

Your mission, if you decide to accept it, will be:

“Transmit a set of independent random samples
of X over a binary serial link.”
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Information and Bits

Your mission, if you decide to accept it, will be:

“Transmit a set of independent random samples
of X over a binary serial link.”

1. Starring at X for a while, you notice that it has olny four possible
values: A, B, C, D

Matteo Matteucci c©Lecture Notes on Machine Learning – p.13/??

Information and Bits

Your mission, if you decide to accept it, will be:

“Transmit a set of independent random samples
of X over a binary serial link.”

1. Starring at X for a while, you notice that it has olny four possible
values: A, B, C, D

2. You decide to transmit the data encoding each reading with two bits:

A = 00, B = 01, C = 10, D = 11.

Mission Accomplished!
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Information and “Fewer Bits”

Your mission, if you decide to accept it, will be:

“The previous code uses 2 bits for symbol.
Knowing that the probabilities are not equal: P(X=A)=1/2, P(X=B)=1/4,

P(X=C)=1/8, P(X=D)=1/8, invent a coding for your transmission that only
uses 1.75 bits on average per symbol.”
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Information and “Fewer Bits”

Your mission, if you decide to accept it, will be:

“The previous code uses 2 bits for symbol.
Knowing that the probabilities are not equal: P(X=A)=1/2, P(X=B)=1/4,

P(X=C)=1/8, P(X=D)=1/8, invent a coding for your transmission that only
uses 1.75 bits on average per symbol.”

1. You decide to transmit the data encoding each reading with a different
number of bits:

A = 0, B = 10, C = 110, D = 111.

Mission Accomplished!
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Information and Entropy

Suppose X can have one of m values with probability

P (X = V1) = p1, . . . , P (X = Vm) = pm.

What’s the smallest possible number of bits, on average, per symbol,
needed to transmit a stream of symbols drawn from X ’s distribution?
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Information and Entropy

Suppose X can have one of m values with probability

P (X = V1) = p1, . . . , P (X = Vm) = pm.

What’s the smallest possible number of bits, on average, per symbol,
needed to transmit a stream of symbols drawn from X ’s distribution?

H(X) = −p1 log2 p1 − p2 log2 p2 − . . . − pm log2 pm

= −

m∑

j=1

pj log2 pj = Entropy of X
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Information and Entropy

Suppose X can have one of m values with probability

P (X = V1) = p1, . . . , P (X = Vm) = pm.

What’s the smallest possible number of bits, on average, per symbol,
needed to transmit a stream of symbols drawn from X ’s distribution?

H(X) = −p1 log2 p1 − p2 log2 p2 − . . . − pm log2 pm

= −

m∑

j=1

pj log2 pj = Entropy of X

“Good idea! But what is entropy anyway?”
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Entropy: “What is it anyway?”

Simple Case:
• X has 2 values ⊕ and ⊖

• p⊕ probability of ⊕
• p⊖ = 1 − p⊕ probability of ⊖

H(X) = −p⊖ log2 p⊖ − p⊕ log2 p⊕
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Entropy: “What is it anyway?”

Simple Case:
• X has 2 values ⊕ and ⊖

• p⊕ probability of ⊕
• p⊖ = 1 − p⊕ probability of ⊖

H(X) = −p⊖ log2 p⊖ − p⊕ log2 p⊕

Entropy measures “disorder” or “uniformity in distribution”

1. High Entropy : X is very “disordered” → “boring”

2. Low Entropy : X is very “ordered” → “interesting”
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Useful Facts on Logarithms

Just for you to know it might be useful to review a couple of formulas to be
used in calculation:

• lnx × y = lnx + ln y

• ln x
y

= lnx − ln y

• lnxy = y × lnx

• log2 x = ln x
ln 2 = log

10
x

log
10

2

• loga x = log
b

a

• log2 0 = −∞ (the formula is no good for a probability of 0)

Matteo Matteucci c©Lecture Notes on Machine Learning – p.17/??



Useful Facts on Logarithms

Just for you to know it might be useful to review a couple of formulas to be
used in calculation:

• lnx × y = lnx + ln y

• ln x
y

= lnx − ln y

• lnxy = y × lnx

• log2 x = ln x
ln 2 = log

10
x

log
10

2

• loga x = log
b

a

• log2 0 = −∞ (the formula is no good for a probability of 0)

Now we can practice with a simple example!
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Specific Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Suppose we are interested in predicting output Y from
input X where

• X = University subject
• Y = Likes the movie “Gladiator”
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Specific Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Suppose we are interested in predicting output Y from
input X where

• X = University subject
• Y = Likes the movie “Gladiator”

From this data we can estimate
• P(Y = Yes) = 0.5
• P(X = Math) = 0.5
• P(Y = Yes | X = History) = 0
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Specific Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Suppose we are interested in predicting output Y from
input X where

• X = University subject
• Y = Likes the movie “Gladiator”

Definition of Specific Conditional Entropy:
• H(Y|X=v): the entropy of Y only for those records in

which X has value v
◦ H(Y|X=Math) = 1
◦ H(Y|X=History) = 0
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Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Definition of Conditional Entropy H(Y|X):

• The average Y specific conditional entropy
• Expected number of bits to transmit Y if

both sides will know the value of X
•

∑
j P (X = vj)H(Y |X = vj)
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Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Definition of Conditional Entropy H(Y|X):
•

∑
j P (X = vj)H(Y |X = vj)

vj P (X = vj) H(Y |X = vj)

Math 0.5 1

Hystory 0.25 0

CS 0.25 0

H(Y|X) = ?
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Conditional Entropy

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

Definition of Conditional Entropy H(Y|X):
•

∑
j P (X = vj)H(Y |X = vj)

vj P (X = vj) H(Y |X = vj)

Math 0.5 1

Hystory 0.25 0

CS 0.25 0

H(Y|X)= 0.5 × 1 + 0.25 × 0 + 0.25 × 0 = 0.5

Good, but what about Machine Learning?
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Information Gain

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

I must transmit Y on a binary serial line.
How many bits on average would it save me if both ends

of the line knew X?

IG(Y |X) = H(Y ) − H(Y |X)

= 1 − 0.5 = 0.5
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Information Gain

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

I must transmit Y on a binary serial line.
How many bits on average would it save me if both ends

of the line knew X?

IG(Y |X) = H(Y ) − H(Y |X)

= 1 − 0.5 = 0.5

Information Gain measures the “information” provided by
X to predict Y

This IS about Machine Learning!
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Relative Information Gain

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

Hystory No

Math Yes

I must transmit Y on a binary serial line.
What fraction of the bits on average would it save me if

both ends of the line knew X?

RIG(Y |X) = (H(Y ) − H(Y |X))/H(Y )

= (1 − 0.5)/1 = 0.5

Well, we’ll find soon Information Gain and Relative
Information gain talking about supervised learning with

Decision Trees ...
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Why is Information Gain Useful?

Your mission, if you decide to accept it, will be:

“Predict whether someone is going live
past 80 years.”

From historical data you might find:
• IG(LongLife | HairColor) = 0.01
• IG(LongLife | Smoker) = 0.2
• IG(LongLife | Gender) = 0.25
• IG(LongLife | LastDigitOfSSN) = 0.00001

What you should look at?
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