

Prof. Matteo Matteucci

Learning Unsupervised Rules !?! 2

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

Market-Basket Transactions 3

What is Frequent Pattern Mining? ⁴

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
	- What products were often purchased together? Beer and diapers?!
	- What are the subsequent purchases after a PC?
	- What kinds of DNA are sensitive to this new drug?
	- Can we automatically classify web documents?
- Applications
	- Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, DNA sequence analysis, etc.

What is Association Rule Mining? 5

Examples $\{break\} \Rightarrow \{milk\}$ $\{soda\} \Rightarrow \{chips\}$ ${ \text{break}} \Rightarrow { \text{jam} }$

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other

Frequent Itemset ⁶

• **Itemset**

- A collection of one or more items, e.g., {milk, bread, jam}
- k-itemset, an itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- $\lceil \cdot \cdot \cdot \rceil$ o({Milk, Bread}) = 3 σ ({Soda, Chips}) = 4

• **Support**

- Fraction of transactions that contain an itemset
- s({Milk, Bread}) = 3/8 s({Soda, Chips}) = 4/8

• **Frequent Itemset**

TID Items 1 Bread, Peanuts, Milk, Fruit, Jam 2 | Bread, Jam, Soda, Chips, Milk, Fruit 3 | Steak, Jam, Soda, Chips, Bread 4 Jam, Soda, Peanuts, Milk, Fruit 5 Jam, Soda, Chips, Milk, Bread 6 Fruit, Soda, Chips, Milk 7 Fruit, Soda, Peanuts, Milk 8 | Fruit, Peanuts, Cheese, Yogurt

An itemset whose support is greater than or equal to a minsup threshold

What is An Association Rule? 7

Implication of the form $X \Rightarrow Y$, where X and Y are itemsets

Example: {bread} \Rightarrow {milk}

• Rule Evaluation Metrics, Suppor & Confidence

- Support (s)
	- Fraction of transactions that contain both X and Y
- Confidence (c)
	- Measures how often items in Y appear in transactions that contain X

$$
s = \frac{\sigma({\text{Bread, Milk}})}{\text{\# of transactions}} = 0.38
$$

$$
c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75
$$

Support and Confidence Meaning ⁸

Support $(s) = P(X, Y)$

Confidence (c) =
$$
P(X,Y)/P(X)
$$

= $P(Y|X)$

$$
s = \frac{\sigma({\text{Bread, Milk}})}{\text{\# of transactions}} = 0.38
$$

$$
c = \frac{\sigma({\text{Bread, Milk}})}{\sigma({\text{Bread}})} = 0.75
$$

What is the Goal? 9

- Given a set of transactions T, the goal of association rule mining is to find all rules having
	- support ≥ minsup threshold
	- confidence ≥ minconf threshold
- Brute-force approach
	- **List all possible association rules**
	- Compute the support and confidence for each rule
	- **Prune rules that fail the minsup and minconf thresholds**
- Brute-force approach is computationally prohibitive!

Mining Association Rules 10

 ${Bread, Jam} \Rightarrow {Milk}: s=3/8 c=3/4$ ${Bread, Milk} \Rightarrow {Jam}: s=3/8 c=3/3$ ${Milk, Jam} \Rightarrow {Bread}$: s=3/8 c=3/3 ${Bread} \Rightarrow {Milk, Jam}$: s=3/8 c=3/4 ${Jam} \Rightarrow {Bread, Milk}$: s=3/8 c=3/5 ${Milk} \Rightarrow {Bread, Jam}: s=3/8 c=3/6$

- All bove rules are binary partitions of the same itemset: {Milk, Bread, Jam}
- Rules originating from the same itemset have identical support but can have different confidence
-

Mining Association Rules in Two Steps 11

- 1. Frequent Itemset Generation
	- Generate all itemsets whose support \geq minsup
- 2. Rule Generation
	- Generate high confidence rules from frequent itemset
	- Each rule is a binary partitioning of a frequent itemset

However frequent itemset generation is computationally expensive!

Frequent Itemset Generation 12

null AB) (AC) (AD) (AE) (BC) (BD) (BE) (CD) (CE) (DE A) (B) (C) (D) (E ABC) (ABD) (ABE) (ACD) (ACE) (ADE) (BCD) (BCE) (BDE) (CDE \overline{ABCD} $\overline{(ABCE)}$ $\overline{(ABDE)}$ $\overline{(ACDE)}$ $\overline{(BCDE)}$ ABCDE **Given d items, there are 2^d possible candidate itemsets**

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

Frequent Itemset Generation 13

- Brute-force approach:
	- **Each itemset in the lattice is a candidate frequent** itemset
	- Count the support of each candidate by scanning the database

- **Match each transaction against every candidate**
- Complexity \sim O(NMw) => Expensive since M = 2^d

Computational Complexity

- Given d unique items:
	- Number of itemsets: 2^d
	- Number of possible association rules: $\sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j}\right]$

• For d=6, there are 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
	- Complete search: M=2^d
	- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
	- Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
	- Use efficient data structures to store the candidates or transactions
	- No need to match every candidate against every transaction

Reducing the Number of Candidates

16

- Apriori principle
	- **If an itemset is frequent, then all of its subsets must** also be frequent

• Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)
$$

 Support of an itemset never exceeds the support of its subsets, this is known as the anti-monotone property of support

Illustrating Apriori Principle 17

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

How does the Apriori principle work? 18

Items (1-itemsets)

 $2+$

The Apriori Algorithm Idea 19

- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
	- Generate length (k+1) candidate itemsets from length k frequent itemsets
	- **Prune candidate itemsets containing subsets of length** k that are infrequent
	- Count each candidate support by scanning the DB
	- **Eliminate candidates that are infrequent, leaving only** those that are frequent

Important Details on Apriori Algorithm ²⁰

- How to generate candidates?
	- Step 1: self-joining *L^k*
	- Step 2: pruning
- **Example of Candidate-generation**
	- *L3=*{*abc, abd, acd, ace, bcd*}
	- Self-joining: L_3 ^{*} L_3
		- *abcd* from *abc* and *abd*
		- *acde* from *acd* and *ace*
	- **Pruning:**
		- *acde* is removed because *ade* is not in *L³*
	- \blacksquare C_4 ={*abcd*}

The Apriori Algorithm 21

Ck : Candidate itemset of size k *Lk* : frequent itemset of size k

 L_1 = {frequent items}; **for** $(k = 1; L_k != \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; **for each** transaction *t* in database do increment the count of all candidates in *Ck+1* that are contained in *t* L_{k+1} = candidates in C_{k+1} with min_support **end** $\mathsf{return} \cup_k \mathsf{\mathcal{L}}_k$

An Example of Frequent Itemset

Strategies to Improve Apriori Efficiency

- Hash-based itemset counting:
	- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

23

- Transaction reduction:
	- A transaction that does not contain any frequent kitemset is useless in subsequent scans
- Partitioning:
	- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling:
	- **numing on a subset of given data, lower support** threshold + a method to determine the completeness
- Dynamic itemset counting:
	- add new candidate itemsets only when all of their subsets are estimated to be frequent

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f \subset L such that $f \rightarrow L - f$ satisfies the minimum confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules are:

 $ABC \rightarrow D$, ABD $\rightarrow C$, ACD $\rightarrow B$, BCD $\rightarrow A$, A $\rightarrow BCD$, $B \rightarrow ACD$, C $\rightarrow ABD$, D $\rightarrow ABC$, AB $\rightarrow CD$, AC $\rightarrow BD$, $AD \rightarrow BC$, BC $\rightarrow AD$, BD $\rightarrow AC$, CD $\rightarrow AB$

• If $|L| = k$, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

How to efficiently generate rules from ²⁵ **frequent itemsets?**

• Confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

• But confidence of rules generated from the same itemset has an anti-monotone property

 $L = \{A, B, C, D\}$: $c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD)$

• Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

Rule Generation for Apriori Algorithm ²⁶

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

Rule Generation for Apriori Algorithm 27

Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC) would produce the candidate rule $D \Rightarrow ABC$
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Example with Weka: 28 **Formatting the data**

 $\frac{8}{10}$

```
% Example of market basket data
\approx
```
@relation 'basket'

@attribute Bread {1}

```
@attribute Peanuts {1}
```
- @attribute Milk {1}
- @attribute Fruit {1}
- @attribute Jam {1}
- @attribute Soda {1}
- @attribute Chips {1}
- @attribute Steak {1}
- @attribute Cheese {1}
- @attribute Yogurt {1}

@data

- 1,1,1,1,1,?,?,?,?,?
- 1,?,1,1,1,1,1,?,?,?
- 1,?,?,?,1,1,1,1,?,?
- ?,1,1,1,1,1,?,?,?,?
- 1,?,1,?,1,1,1,?,?,?
- ?,?,1,1,?,1,1,?,?,?
- ?,1,1,1,?,1,?,?,?,?
- ?,1,?,1,?,?,?,?,1,1

POLITECNICO DI MILANO

Effect of Support Distribution 29

Many real data sets have skewed support distribution

• If minsup is set too high, we could miss itemsets involving interesting rare (expensive)items

- If minsup is set too low, apriori becomes computationally expensive and the number of itemsets very large
- A single minimum support threshold may not be effective

Are there Interesting/Useful Rules? 30

Anything that is interesting happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

What is the probability of a basket containing both bread *and* washing-up powder? The laws of probability say:

- **I** if you choose a basket at random:
	- There is a probability 0.1 that it contains bread.
	- There is a probability 0.04 that it contains washing-up powder.
- **If these two are independent:**
	- There is a probability $0.1 * 0.04 = 0.004$ it contains both

Are there Interesting/Useful Rules? ³¹

Anything that is interesting happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

We have a prior expectation that just 4 baskets in 1000 should contain **both** bread and washing up powder:

- **If we discover that really it is 20 in 1000 baskets, then** we will be very surprised.
- Something is going on in shoppers' minds: bread and washing-up powder are connected in some way.
- There may be ways to exploit this discovery ...

Another Example

Sequential Pattern Mining

- Association rules do not consider order of transactions
- In many applications such orderings are significant
	- **IF In market basket analysis, it is interesting to know** whether people buy some items in sequence, e.g., buying bed first and then bed sheets later
	- **In Web usage mining, it is useful to find navigational** patterns of users in a Web site from sequences of page visits of users

…

Examples of Sequence

- Typical Web sequence
	- < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of events causing the accident at 3-mile Island:
	- <{clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
	- <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Basic concepts

- Let $I = \{i1, i2, \ldots, im\}$ be a set of items.
	- A sequence is an ordered list of **itemsets**.
	- We denote a sequence S by $\langle A1, A2, ..., Ar \rangle$, where Ai is an itemset, also called an element of S.
	- An element (or an itemset) of a sequence is denoted by $\{a1, a2, ..., ak\}$, where $ai \in I$ is an item.
- We assume without loss of generality that items in an element of a sequence are in lexicographic order

Basic concepts … continued

- The size of a sequence is the number of elements (*itemsets*) in the sequence
- The length of a sequence is the number of items in the sequence (a sequence of length k is called k-sequence)
- Given s1 = $\langle a1 a2 ... a1 \rangle$ and s2 = $\langle b1 b2 ... b0 \rangle$
	- s1 is a subsequence of s2, or s2 is a supersequence of s1, if there exist integers

 $1 \le j$ 1 < j 2 < ... < j $\{r-1\}$ < jr $\le v$ such that

a1 \subseteq bj1, a2 \subseteq bj2, ..., ar \subseteq bjr.

We also say that s2 contains s1.

Example

53

Let $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- The size of the sequence $\langle \{3\},4, 5\},\{8\} \rangle$ is 3, and the length of the sequence is 4.
- The sequence
	- $\langle \{3\}, \{4, 5\}, \{8\} \rangle$ is contained in (or is a subsequence of)
	- \bullet $\langle \{6\}, \{3, 7\}, \{9\}, \{4, 5, 8\}, \{3, 8\} \rangle$
	- In fact, $\{3\} \subseteq \{3, 7\}$, $\{4, 5\} \subseteq \{4, 5, 8\}$, and $\{8\} \subseteq \{3, 8\}$
- However, $\langle \{3\}\{8\} \rangle$ is not contained in $\langle \{3, 8\} \rangle$ or vice versa

Goal of Sequential Pattern Mining

- The input is a set S of sequences (or sequence database)
- The problem is to mine all sequences that have a userspecified minimum support
	- Each such sequence is called a frequent sequence, or a sequential pattern
	- The support for a sequence is the fraction of total data sequences in S that contains this sequence
- Apriori property for sequential patterns
	- If a sequence S is not frequent, then none of the supersequences of S is frequent
	- For instance, if $\leq h$ b> is infrequent so do $\leq h$ a b> and $\langle \{\text{ah}\}\,\{\text{b}\}\rangle$

Terminology

- **Itemset**
	- **Non-empty set of items**
	- Each itemset is mapped to an integer
- Sequence
	- **Ordered list of itemsets**
- Support for a Sequence
	- **Fiaction of sequence database supporting a sequence**
- Maximal Sequence
	- A sequence not contained in any other sequence
- **Large Sequence**
	- Sequence that meets minisup

Generalized Sequential Pattern (GSP) 56

• Step 1:

- Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- Step 2: Repeat until no new frequent sequences are found
	- Candidate Generation:
		- Merge pairs of frequent subsequences found in the $(k-1)$ th pass to generate candidates with k items
	- Candidate Pruning:
		- Prune candidate k-sequences that contain infrequent (k-1)-subsequences
	- **Support Counting:**
		- Make a new pass over the sequence database D to find the support for these candidate sequences
	- Candidate Elimination:
		- Eliminate candidate k-sequences whose actual support is less than minsup

Example 59

Table 1. A set of transactions sorted by customer ID and transaction time

Example (cond) 60

Table 2. Data sequences produced from the transaction database in Table 1.

Table 3. The final output sequential patterns

Timing Constraints ⁶²

xg : max-gap

ng : min-gap

m^s : maximum span

$x_g = 2$, $n_g = 0$, $m_s = 4$

