

Prof. Matteo Matteucci

Learning Unsupervised Rules !?!

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

Market-Basket Transactions

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

What is Frequent Pattern Mining?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, DNA sequence analysis, etc.

What is Association Rule Mining?

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples {bread} \Rightarrow {milk} {soda} \Rightarrow {chips} {bread} \Rightarrow {jam}

5

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Frequent Itemset

Itemset

- A collection of one or more items, e.g., {milk, bread, jam}
- k-itemset, an itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- $\sigma(\{\text{Milk, Bread}\}) = 3$ $\sigma(\{\text{Soda, Chips}\}) = 4$

Support

- Fraction of transactions that contain an itemset
- s({Milk, Bread}) = 3/8
 s({Soda, Chips}) = 4/8

• Frequent Itemset

- TID Items Bread, Peanuts, Milk, Fruit, Jam 1 2 Bread, Jam, Soda, Chips, Milk, Fruit 3 Steak, Jam, Soda, Chips, Bread 4 Jam, Soda, Peanuts, Milk, Fruit 5 Jam, Soda, Chips, Milk, Bread 6 Fruit, Soda, Chips, Milk 7 Fruit, Soda, Peanuts, Milk 8 Fruit, Peanuts, Cheese, Yogurt
- An itemset whose support is greater than or equal to a minsup threshold

What is An Association Rule?

• Implication of the form $X \Rightarrow Y$, where X and Y are itemsets

• Example: {bread} \Rightarrow {milk}

Rule Evaluation Metrics, Suppor & Confidence

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\# \text{ of transactions}} = 0.38$$

$$c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$$

Support and Confidence Meaning

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

8

Support (s) = P(X,Y)

Confidence (c) =
$$P(X,Y)/P(X)$$

= $P(Y|X)$

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\# \text{ of transactions}} = 0.38$$

$$c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$$

POLITECNICO DI MILANO

What is the Goal?

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- Brute-force approach is computationally prohibitive!

Mining Association Rules

{Bread, Jam} \Rightarrow {Milk}: s=3/8 c=3/4 {Bread, Milk} \Rightarrow {Jam}: s=3/8 c=3/3 {Milk, Jam} \Rightarrow {Bread}: s=3/8 c=3/3 {Bread} \Rightarrow {Milk, Jam}: s=3/8 c=3/4 {Jam} \Rightarrow {Bread, Milk}: s=3/8 c=3/5 {Milk} \Rightarrow {Bread, Jam}: s=3/8 c=3/6

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

- All bove rules are binary partitions of the same itemset: {Milk, Bread, Jam}
- Rules originating from the same itemset have identical support but can have different confidence
- Decouple the support and confidence requirements!

Mining Association Rules in Two Steps

11

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
- 2. Rule Generation
 - Generate high confidence rules from frequent itemset
 - Each rule is a binary partitioning of a frequent itemset

However frequent itemset generation is computationally expensive!

Frequent Itemset Generation

null С Е А В D AB AC AD AE BC ΒD ΒE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE Given d items, there are 2^d possible candidate itemsets ABCDE

Matteo Matteucci – Information Retrieval & Data Mining

POLITECNICO DI MILANO

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d

Computational Complexity

- Given d unique items:
 - Number of itemsets: 2^d
 - Number of possible association rules: $\sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$

• For d=6, there are 602 rules

POLITECNICO DI MILANO

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing the Number of Candidates

16

- Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent

 Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

 Support of an itemset never exceeds the support of its subsets, this is known as the anti-monotone property of support

Illustrating Apriori Principle

Matteo Matteucci - Information Retrieval & Data Mining

POLITECNICO DI MILANO

How does the Apriori principle work?

Items (1-itemsets)

Item	Count	
Bread	4	
Peanuts	4	
Milk	6	
Fruit	6	
Jam	5	
Soda	6	
Chips	4	
Stock	1	
Cheese	L	
Yogurt	1	

Minimum Support = 4

2-itemsets				
2-Itemset	Count			
Bread, Jam	4			
Peanuts, Fruit	4			
Milk, Fruit	5			
Milk, Jam	4			
Milk, Soda	5			
Fruit, Soda	4			
Jam, Soda	4			
Soda, Chips	4			

_	3-itemsets	5
	3-Itemset	Count
	Milk, Fruit, Soda	4

The Apriori Algorithm Idea

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count each candidate support by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Important Details on Apriori Algorithm

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - C₄={abcd}

The Apriori Algorithm

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} != \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

An Example of Frequent Itemset

Matteo Matteucci – Information Retrieval & Data Mining

Strategies to Improve Apriori Efficiency

- Hash-based itemset counting:
 - A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

- Transaction reduction:
 - A transaction that does not contain any frequent kitemset is useless in subsequent scans
- Partitioning:
 - Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling:
 - mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting:
 - add new candidate itemsets only when all of their subsets are estimated to be frequent

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules are:

 $\begin{array}{l} \mathsf{ABC} \rightarrow \mathsf{D}, \, \mathsf{ABD} \rightarrow \mathsf{C}, \, \mathsf{ACD} \rightarrow \mathsf{B}, \, \mathsf{BCD} \rightarrow \mathsf{A}, \, \mathsf{A} \rightarrow \mathsf{BCD}, \\ \mathsf{B} \rightarrow \mathsf{ACD}, \, \mathsf{C} \rightarrow \mathsf{ABD}, \, \mathsf{D} \rightarrow \mathsf{ABC}, \, \mathsf{AB} \rightarrow \mathsf{CD}, \, \mathsf{AC} \rightarrow \mathsf{BD}, \\ \mathsf{AD} \rightarrow \mathsf{BC}, \, \mathsf{BC} \rightarrow \mathsf{AD}, \, \mathsf{BD} \rightarrow \mathsf{AC}, \, \mathsf{CD} \rightarrow \mathsf{AB} \end{array}$

 If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

How to efficiently generate rules from frequent itemsets?

Confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

 But confidence of rules generated from the same itemset has an anti-monotone property

 $L = \{A,B,C,D\}: c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

 Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

Rule Generation for Apriori Algorithm

Matteo Matteucci – Information Retrieval & Data Mining

Rule Generation for Apriori Algorithm

Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Example with Weka: Formatting the data

0/0 00 Example of market basket data 00 @relation 'basket' @attribute Bread {1} @attribute Peanuts {1} @attribute Milk {1} @attribute Fruit {1} @attribute Jam {1} @attribute Soda {1} @attribute Chips {1} @attribute Steak {1}

- @attribute Cheese {1}
- @attribute Yogurt {1}

@data

1,1,1,1,1,?,?,?,?,?

28

- 1,?,1,1,1,1,1,?,?,?
- 1,?,?,?,1,1,1,1,?,?
- ?,1,1,1,1,1,?,?,?,?,?
- 1,?,1,?,1,1,1,?,?,?
- ?,?,1,1,?,1,1,?,?,?
- ?,1,1,1,?,1,?,?,?,?
- ?,1,?,1,?,?,?,?,1,1

POLITECNICO DI MILANO

Effect of Support Distribution

 Many real data sets have skewed support distribution

 If minsup is set too high, we could miss itemsets involving interesting rare (expensive)items

- If minsup is set too low, apriori becomes computationally expensive and the number of itemsets very large
- A single minimum support threshold may not be effective

Are there Interesting/Useful Rules?

Anything that is <u>interesting</u> happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

What is the probability of a basket containing both bread *and* washing-up powder? The laws of probability say:

- if you choose a basket at random:
 - There is a probability 0.1 that it contains bread.
 - There is a probability 0.04 that it contains washing-up powder.
- If these two are independent:
 - There is a probability 0.1 * 0.04 = 0.004 it contains both

Are there Interesting/Useful Rules?

Anything that is <u>interesting</u> happens significantly more than you would expect by chance.

Example: basic statistical analysis of basket data may show that 10% of baskets contain bread, and 4% of baskets contain washing-up powder.

We have a prior expectation that just 4 baskets in 1000 should contain **both** bread and washing up powder:

- If we discover that really it is 20 in 1000 baskets, then we will be very surprised.
- Something is going on in shoppers' minds: bread and washing-up powder are connected in some way.
- There may be ways to exploit this discovery ...

Another Example

ID	apples	beer	cheese	dates	eggs	fish	glue	honey	cream
1	1	1		1			1	1	
2			1	1	1				
3		1	1			1			
4		1				1			1
5					1		1		
6						1			1
7	1			1				1	
8						1			1
9			1		1				
10		1					1		
11					1		1		
12	1								
13			1			1			
14			1			1			
15								1	1
16				1					
17	1					1			
18	1	1	1	1				1	
19	1	1		1			1	1	
20					1				

Matteo Matteucci – Information Retrieval & Data Mining

Sequential Pattern Mining

- Association rules do not consider order of transactions
- In many applications such orderings are significant
 - In market basket analysis, it is interesting to know whether people buy some items in sequence, e.g., buying bed first and then bed sheets later
 - In Web usage mining, it is useful to find navigational patterns of users in a Web site from sequences of page visits of users

Examples of Sequence

- Typical Web sequence
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of events causing the accident at 3-mile Island:
 - <{clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Basic concepts

- Let I = {i1, i2, ..., im} be a set of items.
 - A sequence is an ordered list of <u>itemsets</u>.
 - We denote a sequence S by (A1, A2, ..., Ar), where Ai is an itemset, also called an element of S.
 - An element (or an itemset) of a sequence is denoted by {a1, a2, ..., ak}, where aj ∈ I is an item.
- We assume without loss of generality that items in an element of a sequence are in lexicographic order

Basic concepts ... continued

- The size of a sequence is the number of elements (*itemsets*) in the sequence
- The length of a sequence is the number of items in the sequence (a sequence of length k is called k-sequence)
- Given s1 = $\langle a1 a2 \dots ar \rangle$ and s2 = $\langle b1 b2 \dots bv \rangle$
 - s1 is a subsequence of s2, or s2 is a supersequence of s1, if there exist integers

 $1 \le j_1 < j_2 < ... < j_{r-1} < jr \le v$ such that

 $a1 \subseteq bj1, \, a2 \subseteq bj2, \, ..., \, ar \subseteq bjr.$

We also say that s2 contains s1.

Example

53

Let $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

- The size of the sequence ({3}{4, 5}{8}) is 3, and the length of the sequence is 4.
- The sequence
 - {{3}{4, 5}{8}} is contained in (or is a subsequence of)
 - {{6} {3, 7}{9}{4, 5, 8}{3, 8}
 - In fact, $\{3\} \subseteq \{3, 7\}, \{4, 5\} \subseteq \{4, 5, 8\}, and \{8\} \subseteq \{3, 8\}$
- However, ({3}{8}) is not contained in ({3, 8}) or vice versa

Goal of Sequential Pattern Mining

- The input is a set S of sequences (or sequence database)
- The problem is to mine all sequences that have a userspecified minimum support
 - Each such sequence is called a frequent sequence, or a sequential pattern
 - The support for a sequence is the fraction of total data sequences in S that contains this sequence
- Apriori property for sequential patterns
 - If a sequence S is not frequent, then none of the supersequences of S is frequent
 - For instance, if <h b> is infrequent so do <h a b> and <{ah} {b}>

Terminology

- Itemset
 - Non-empty set of items
 - Each itemset is mapped to an integer
- Sequence
 - Ordered list of itemsets
- Support for a Sequence
 - Fraction of sequence database supporting a sequence
- Maximal Sequence
 - A sequence not contained in any other sequence
- Large Sequence
 - Sequence that meets minisup

Generalized Sequential Pattern (GSP)

• Step 1:

- Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- Step 2: Repeat until no new frequent sequences are found
 - Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidates with k items
 - Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
 - Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
 - Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

Example

59

Table 1. A set of transactions sorted by customer ID and transaction time

Customer ID	Transaction Time	Transaction (items bought)
1	July 20, 2005	30
1	July 25, 2005	90
2	July 9, 2005	10, 20
2	July 14, 2005	30
2	July 20, 2005	40, 60, 70
3	July 25, 2005	30, 50, 70
4	July 25, 2005	30
4	July 29, 2005	40, 70
4	August 2, 2005	90
5	July 12, 2005	90

Example (cond)

Table 2. Data sequences produced from the transaction database in Table 1.

Customer ID	Data Sequence
1	<{30} {90}>
2	({10, 20} {30} {40, 60, 70})
3	<{30, 50, 70}>
4	{30} {40, 70} {90}
5	({90})

Table 3. The final output sequential patterns

	Sequential Patterns with Support \ge 25%
1-sequences	<{30}>, <{40}>, <{70}>, <{90}>
2-sequences	<pre>{{30} {40}, <{30} {70}, <{30} {90}, <{40, 70}</pre>
3-sequences	({30} {40, 70})

Matteo Matteucci – Information Retrieval & Data Mining

Timing Constraints

x_g: max-gap

n_g: min-gap

m_s: maximum span

$x_g = 2, n_g = 0, m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No