
goo.gl/DBwhhC
ABOUT ME

Gianluca Bardaro, PhD student in Robotics

Contacts:

gianluca.bardaro@polimi.it

02 2399 3565

Research field:

Formal approach to robot development

Robot and robot architecture models

Robot simulation

GAZEBOSIM AND SDF
ROBOTICS

goo.gl/DBwhhC
WHAT IS A SIMULATION

Simulation is the imitation of the operation of a real-world process or

system over time.

The act of simulating something first requires that a model be developed;

this model represents the key characteristics or behaviors/functions of the

selected physical or abstract system or process.

The model represents the system itself, whereas the simulation represents

the operation of the system over time.

goo.gl/DBwhhC
FOR WHAT PURPOSE?

Robots…

are small and safe

can be easily tested in the filed

require real world interactions

But robots…

can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…

as engineers we know that everything should be based on a

well detailed project and should be tested and verified

before any real application

goo.gl/DBwhhC
FOR WHAT PURPOSE?

Robots…

are small and safe

can be easily tested in the filed

require real world interactions

But robots…

can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…

as engineers we know that everything should be based on a

well detailed project and should be tested and verified

before any real application

goo.gl/DBwhhC
FOR WHAT PURPOSE?

Robots…

are small and safe

can be easily tested in the filed

require real world interactions

But robots…

can be big and dangerous

need to be tested in some specific conditions

have a behavior based on software which is prone to bugs

Moreover…

as engineers we know that everything should be based on a

well detailed project and should be tested and verified

before any real application
Remember to test and simulate, it can save your life!

goo.gl/DBwhhC
ROBOT SIMULATORS

GOOD
SIMULATOR

Real world
interaction

Physics
simulation

Sensors
simulation

Simplicity in
building
robot

models

Flexibility

Integration
with robot
frameworks

goo.gl/DBwhhC
ROBOT SIMULATORS

goo.gl/DBwhhC
BACK IN THE DAY…

ROS become
famous

Gazebo
become
famous

Gazebo
become part

of ROS

Gazebo
regain its

independence

Currently at
version 8.0

Standard de facto

in robot software

development

Only available 3D

simulator for ROS

Development

frozen at v2.0

No more part of

ROS, but still

compatible

goo.gl/DBwhhC
WHY GAZEBO?

Main features of Gazebo

Dynamic simulation based on various physics engines (ODE, Bullet, Simbody and DART)

Sensors (with noise) simulation

Plugin to customize robots, sensors and the environment

Realistic rendering of the environment and the robots

Library of robot models and model editor

ROS integration

Advanced features

Remote & cloud simulation

Open source

goo.gl/DBwhhC
SYSTEM REQUIREMENTS

Gazebo is currently best used on Ubuntu.

I strongly suggest a computer with:

A dedicated GPU

Any modern CPU

At least 500MB of free disk space

Ubuntu Xenial

Versions used in this course:

Ubuntu 16.04.2 LTS (Xenial Xerus) & Gazebo 7.0

goo.gl/DBwhhC
INSTALLATION

In a working installation of Ubuntu 16.04.2:

$ sudo apt-get update

$ sudo apt-get install gazebo7

To run Gazebo:

$ gazebo

goo.gl/DBwhhC
PREDICTABLE QUESTIONS

What kind of existing knowledge do I need to use Gazebo? LITTLE

Can I use a different/newer/older version of Gazebo? YES (5.0/6.0/8.0)

Can I use a different/newer/older version of Ubuntu? YES

Can I use a different Linux distribution? YES

Can I use Windows/OS X? NO

Can I use a virtual machine? YES

Is the use of the simulator required for the project? YES

I know Gazebo and I hate it! Can I use another simulator? NO

goo.gl/DBwhhC
CUSTOMIZATION

• Modifying existing robot or sensor models

• Building our own robot or sensor models

• Modifying the behavior of existing robot models

• Controlling and defining a behavior for our own robot models

• Creating specific environment compatible with our
experiments

• Integrating the simulation with the user and the robot
architecture

What kind of customization are we looking for in a simulator?

goo.gl/DBwhhC
CREATING AND MODIFYING A MODEL

Using the model editor

Newer versions of Gazebo provide tools to create and

modify models directly form the user interface

Create object and change their shape or position using

graphical tools

Nice little windows to customize physical and

geometrical parameters

Easily connect two object with a joint

Let’s see it in action!

Using simulation description format (SDF)

SDF is an evolution of the unified robot description

format (URDF)

An XML file format that describes environments, objects

and robots for robotic simulation

Hierarchical and well defined

“Compact” description of a complete simulated world

Sounds complex but it’s powerful and

necessary

goo.gl/DBwhhC
SIMULATION DESCRIPTION FORMAT

As any XML file is composed by tags, but differently

from some XML files the structure is quite simple

Tag structure:

sdf

world

model

actor

light

<?xml version='1.0'?>

<sdf version='1.6'>

<world name='default'>

...

</world>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

<model name='model'>

...

</model>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

<actor name='act'>

...

</actor>

</sdf>

<?xml version='1.0'?>

<sdf version='1.6'>

<light name='light'>

...

</light>

</sdf>

goo.gl/DBwhhC
SDF/ WORLD

The world represent everything inside the simulation ready to be simulated

Most important available child tags are: scene, light, model, actor, plugin, gui, include

Physics related child tags: physics, gravity, magnetic_field, spherical_coordinates

More child tags: audio, atmosphere, wind, road, state, population

sdf/(light, model, actor)VS world/(light, model, actor)

SDF is an evolution and a substitute of URDF, so it must maintain the same functionalities

A valid SDF file may contain only a single or a list object and act as an “archive”

Object defined outside the tag world can be used with the tag include

goo.gl/DBwhhC
SDF/MODEL

What is a model?

A container for the elements of the robot (attributes: name)

Composed by links and joints, or other models.

Use the include tag to include previously defined models. Recursion can create really complex

structures.

What is a link?

Any rigid element of the robot. Child of the model tag.

It has physical and visual properties and collisions

goo.gl/DBwhhC
SDF/MODEL

What is a joint?

Connects two links together with kinematic and dynamics properties

Various type of joint are available depending on the behavior of the links (revolute, spherical, …)

Always defined between a parent link and a child link

pose and frame are two key elements of each of these component. Together they

define the position and orientation of each element with respect to another. The

correct use of reference frame can vastly simplify the construction of any complex

robot.

goo.gl/DBwhhC
ABOUT JOINTS

Degree of freedom definition:

“In a mechanical system is the number of

independent parameters that define its configuration.”

goo.gl/DBwhhC
ABOUT JOINTS

Prismatic (1 DoF)

Planar (3 DoF)

Screw (1 DoF)Revolute (1 DoF)

Cilindric (2 DoF) Sphere (3 DoF)

goo.gl/DBwhhC
MORE ABOUT MODELS

Models have complex structures may include various component to improve they

appearance and behavior.

A specific folder structure is used to define a model:

.gazebo/models/my_model: our model folder inside the main Gazebo folder

model.config: Meta-data about the model

model.sdf: SDF description of the model

meshes: a directory for all COLLADA and STL files

materials/texture & material/scripts: texture images and material scripts

plugins: a directory for all the code used to define the behavior of the model

goo.gl/DBwhhC
SDF DEFINITION

Looks pretty simple, is this all?! Of course not

You can find the complete description of SDF here:

http://sdformat.org/spec

http://sdformat.org/spec

goo.gl/DBwhhC
LET’S SEE AN EXAMPLE

Create a model directory

mkdir -p ~/.gazebo/models/willy2

Create the configuration file

gedit ~/.gazebo/models/willy2/model.config

Fill the configuration file

Create the sdf file

gedit ~/.gazebo/models/willy2/model.sdf

Fill the sdf file

<?xml version='1.0'?>

<sdf version='1.4'>

<model name="my_robot">

</model>

</sdf>

<?xml version="1.0"?>

<model>

<name>willy2</name>

<version>1.0</version>

<sdf version='1.4'>willy2.sdf</sdf>

<author>

<name>Builder Bob</name>

<email>robert.builder@polimi.it</email>

</author>

<description>

A two wheeled robot.

</description>

</model>

goo.gl/DBwhhC
BUILDING THE ROBOT

It’s important to build the robot progressively, start with
a simple base and add up the other elements

The result we want it’s something like this:

For this we need only a simple link shaped like a box

<link name='chassis'>

<pose>0 0 .1 0 0 0</pose>

<collision name='collision'>

<geometry>

<box>

<size>.4 .2 .1</size>

</box>

</geometry>

</collision>

<visual name='visual'>

<geometry>

<box>

<size>.4 .2 .1</size>

</box>

</geometry>

</visual>

</link>

goo.gl/DBwhhC
ADDING A CASTER

A caster is a simple wheel with no

constraint, it’s not connected to the

body of the robot using a joint, it’s

used only to sustain the weight.

Since there is no joint we can add it

to the base using a second

collision without defining a

new link.

goo.gl/DBwhhC
ADDING A CASTER

<collision name='caster_collision'>

<pose>-0.15 0 -0.05000</pose>

<geometry>

<sphere>

<radius>.05</radius>

</sphere>

</geometry>

<surface>

<friction>

<ode>

<mu>0</mu>

<mu2>0</mu2>

<slip1>1.0</slip1>

<slip2>1.0</slip2>

</ode>

</friction>

</surface>

</collision>

<visual name='caster_visual'>

<pose>-0.15 0 -0.05000</pose>

<geometry>

<sphere>

<radius>.05</radius>

</sphere>

</geometry>

</visual>

goo.gl/DBwhhC
ADDING THE WHEELS

The two wheels are real wheels, not

like the caster. They are the source

of the movement of the robot and

they will be controlled.

The wheels are defined as links and

are connected to the body of the

robot using joints.

goo.gl/DBwhhC
ADDING THE WHEELS

<link name="left_wheel">

<pose>0.1 0.13 0.1 0 1.5707 1.5707</pose>

<collision name="collision">

<geometry>

<cylinder>

<radius>.1</radius>

<length>.05</length>

</cylinder>

</geometry>

</collision>

<visual name="visual">

<geometry>

<cylinder>

<radius>.1</radius>

<length>.05</length>

</cylinder>

</geometry>

</visual>

</link>

<link name="right_wheel">

<pose>0.1 -0.13 0.1 0 1.5707 1.5707</pose>

...

</link>

goo.gl/DBwhhC
ADDING THE JOINTS

We use joints to connect the

wheels to the chassis.

Since the wheels are constrained in

any direction of movement except

for the rotation around an axis we

use a revolute joint.

<joint type="revolute" name="left_wheel_hinge">

<pose>0 0 -0.03 0 0 0</pose>

<child>left_wheel</child>

<parent>chassis</parent>

<axis>

<xyz>0 1 0</xyz>

</axis>

</joint>

<joint type="revolute" name="right_wheel_hinge">

<pose>0 0 0.03 0 0 0</pose>

<child>right_wheel</child>

...

</joint>

goo.gl/DBwhhC
THE ROBOT IS COMPLETE

