Lab03 - Linear Regression basics

1) Linear regression: simple exercise with only 8 points.

The exercise has ben solved step by step, using R only to help with calculations. First of all, let us estimate the parameters beta0 (b0) and beta1 (b1), i.e. the intercept and slope of the linear model.

$$
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
$$

set up the predictor variables xi and the responses yi # note that x and y have been generated as follows: $# x =$ rnorm(8) # $y = 2 * x + \text{rnorm}(8,5, .5)$ # then they have been rounded to ease the calculations $x = c(0.75,-0.64,1.43,-0.61,0.23,0.43,-1.48,2.06)$ y = c(6.60,4.31,7.51,3.48,5.21,5.74,1.65,9.76) $n = length(x)$

First, calculate b1 (slope) and b0

$$
\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \n\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},
$$

mean(x) # [1] 0.27125 mean(y) # [1] 5.5325 $x - 0.27$ # [1] 0.48 -0.91 1.16 -0.88 -0.04 0.16 -1.75 1.79 y - 5.53 # [1] 1.07 -1.22 1.98 -2.05 -0.32 0.21 -3.88 4.23 $(x-0.27)$ * $(y - 5.53)$ # [1] 0.51 1.11 2.30 1.80 0.01 0.03 6.79 7.57 ## sum((x-0.27) $*(y - 5.53)$) = 20.13

 $(x-0.27)^2$ # [1] 0.23 0.83 1.35 0.77 0.00 0.03 3.06 3.20 ## sum($(x-0.27)^2$) = 9.47

b1 = slope coefficient = sum((x-0.27) * (y - 5.53))/sum((x-0.27)^2) $b1 = 20.13/9.47$ $# b1 = 2.12$ $#H$ b0 = intercept $#$ b0 = mean(y) - b1 $*$ mean(x) $b0 = 5.53 - 2.12 * 0.27$ $#$ b₀ = 4.96 # given the parameters we calculated, the estimated yhat = $4.96 + 2.12 \times x$ # plot the points plot(x,y) # draw the estimated function abline(b0,b1); # draw the original function abline(5,2,col="red")

2) Calculate the residuals

 $vhat = b0 + b1 * x$ RSS=sum((y-yhat)^2) # RSS = 1.059709

Note that this value of RSS is a minimum: changing values of b0 and b1 RSS will always be bigger

3) Calculate the standard error:

$$
\text{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad \text{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}
$$

We already have mean(x) = 0.27 and the SSE = 9.47 . However, in practice we don't know sigma (we are usually not given the original distribution), so we need to estimate that. RSE (the Residual Standard Error) is a good estimate for it:

$$
\text{RSE} = \sqrt{\text{RSS}/(n-2)}
$$

 $RSE = sqrt(RSS/(n-2))$ $# RSE = 0.42$

SEb0 = sqrt(.42^2 * (1/8 + (0.27^2 / 9.47))) # SEb0 = 0.1529965 SEb1 = sqrt(.42^2 / 9.47) # SEb1 = 0.1364817

4) Compute 95% confidence intervals

sample of data. For linear regression, the 95% confidence interval for β_1 approximately takes the form

$$
\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1). \tag{3.9}
$$

c(b1-2*SEb1, b1+2*SEb1) # [1] 2.088175 2.162684

c(b0-2*SEb0, b0+2*SEb0) # [1] 4.909162 5.002793

NOTE that 2 is just an approximation (see note 3 at page 66). The next step will show how to calculate the proper interval to have 95% confidence.

5) Compute the t-statistic

 $t = (b1-0) / (SEb1) = 15.56769$

For simple linear regression we use a t-distribution with n − 2 degrees of freedom: the sample size minus the number of estimated parameters.

Look up the table with the pre-computed probabilities for different degrees of freedom and values of t:

6) Recall RSE and compute R^2

RSE is an estimate of the *lack of fit:*

$$
\text{RSE} = \sqrt{\text{RSS}/(n-2)}
$$

% TSS = total sum of squares (similar to RSS but wrt the mean and not the yi) $TSS = sum((y-mean(y))^2)$ % [1] 43.84995

% compute R^2 Rs = (TSS-RSS)/TSS % [1] 0.9758408

% show relationship between R^2 and correlation in the univariate case $cor(x,y)^2$

7) Show semi-automatic solution

The experiment above can be conducted in a faster way, just by making R do more calculations (instead of moving actual numbers from one formula to another - that was just to give a step-by-step introduction to linear regression). Here is the code:

initialize variables $x = c(0.75,-0.64,1.43,-0.61,0.23,0.43,-1.48,2.06)$ y = c(6.60,4.31,7.51,3.48,5.21,5.74,1.65,9.76) $n = length(x)$ # find parameters $b1 = sum((x-mean(x)) * (y-mean(y))) / sum((x-mean(x))^2)$ $b0 = \text{mean}(y) - b1$ * mean(x) # calculate RSS and RSE $yhat = b0 + b1 * x$ RSS=sum((y-yhat)^2) $RSE = sqrt(RSS/(n-2))$ # calculate SEb0 and SEb1 SEb0 = sqrt(RSE^2 * (1/length(x) + mean(x)^2/sum((x-mean(x))^2))) SEb1 = sqrt(RSE 2 /sum((x-mean(x))^{2})) # compute t-statistics $to = (b0-0) / (SEb0)$ $t1 = (b1-0) / (SEb1)$

compute R^2 $TSS = sum((y-mean(y))^2)$ Rs = (TSS-RSS)/TSS

8) Redo everything automagically with R

help(lm)

 $Im.fit = Im(y \sim x)$ plot (x,y) ; abline(lm.fit); abline(5,2,col="red") # show that the values we find are consistent with the ones we calculated previously summary(lm.fit) coef(lm.fit) confint(lm.fit)

show that predictions can also be done $predict(lm.fit, data.frame(x = 4), interval="confidence")$

9) Finally, show how estimates change with (1) number of points and (2) variance

more points $x = \text{norm}(100)$ $y = 2 * x + \text{norm}(100, 5, .5)$

 $lm.fit = lm(y~x)$ plot(x,y); abline(lm.fit); abline(5,2,col="red") summary(lm.fit)

same points as in simple experiment, much more variance $x = \text{rnorm}(8)$ $y = 2 * x + \text{norm}(8, 5, 5)$