

Artificial Neural Networks and Deep Learning - Word Embedding-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it) Artificial Intelligence and Robotics Laboratory Politecnico di Milano

Recall Machine Learning Paradigms

Immagine you have a certain experience E, and let's name it

 $D = x_1, x_2, x_3, \dots, x_N$

- <u>Supervised learning</u>: given the desired outputs $t_1, t_2, t_3, ..., t_N$ learn to produce the correct output given a new set of input
- *Unsupervised learning*: exploit regularities in *D* to build a representation to be used for reasoning or prediction
- <u>Reinforcement learning</u>: producing actions $a_1, a_2, a_3, ..., c$ the environment, and receiving rewards $r_1, r_2, r_3, ..., r_N$ to maximize rewards in the long term

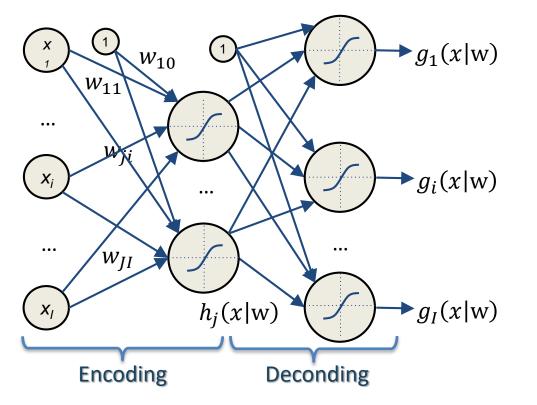
Haven't seen much of it, is it?

This course focuses mainly on Supervised and Unsupervised Learning ...

Neural Autoencoder Recall

Network trained to output the input (i.e., to learn the identity function)

- Limited number of units in hidden layers (compressed representation)
- Constrain the representation to be sparse (sparse representation)

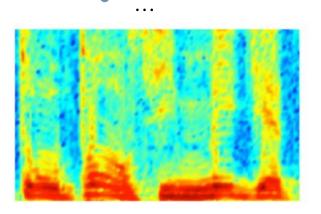


$$\begin{aligned} x \in \Re^{I} \xrightarrow{enc} h \in \Re^{J} \xrightarrow{dec} g \in \Re^{I} \\ I << J \end{aligned}$$
$$E = \|g_{i}(x_{i}|w) - x_{i}\|^{2} + \lambda \sum_{j} \left| h_{j} \left(\sum_{i} w_{ji}^{(1)} x_{i} \right) \right| \end{aligned}$$
$$\begin{aligned} \text{Reconstruction error} \\ g_{i}(x_{i}|w) \sim x_{i} \end{aligned}$$
$$\begin{aligned} \text{Sparsity term} \\ h_{j}(x_{i}|w) \sim 0 \end{aligned}$$

Word Embedding Motivation

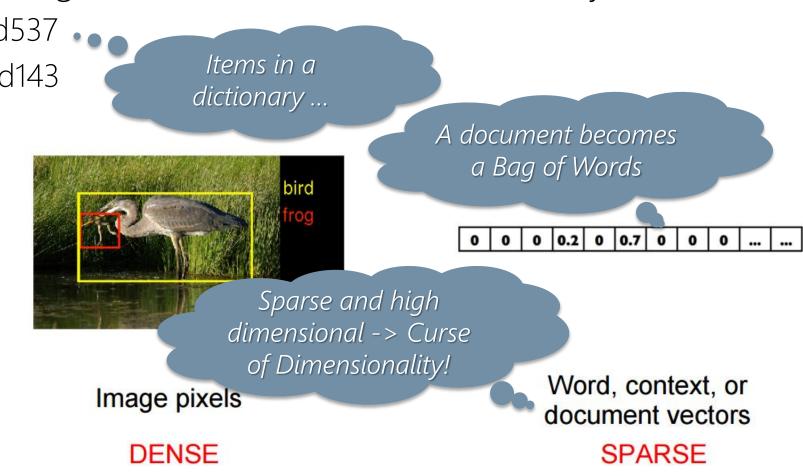
Natural language processing treats words as discrete atomic symbols

- 'cat' is encoded as Id537
- 'dog' is encoded as Id143



Audio Spectrogram

DENSE



Encoding Text is a Serious Thing

Performance of real-world applications (e.g., chatbot, document classifiers, information retrieval systems) depends on input encoding:

Local representations

- N-grams Language Model
- Bag-of-words
- 1-of-N coding

Continuous representations

- Latent Semantic Analysis
- Latent Dirichlet Allocation
- Distributed Representations

Determine $P(s = w_1, ..., w_k)$ in some domain of interest $P(s_k) = \prod_i^k P(w_i | w_1, ..., w_{i-1})$

In traditional n-gram language models "the probability of a word depends only on the context of n–1 previous words"

$$\hat{P}(s_k) = \prod_{i=1}^{k} P(w_i | w_{i-n+1}, \dots, w_{i-1})$$

Typical ML-smoothing learning process (e.g., Katz 1987):

• compute
$$\hat{P}(w_i | w_{i-n+1}, ..., w_{i-1}) = \frac{\#w_{i-n+1}, ..., w_{i-1}, w_i}{\#w_{i-n+1}, ..., w_{i-1}}$$

• smooth to avoid zero probabilities

N-gram Language Model: Curse of Dimensionality

Let's assume a 10-gram LM on a corpus of 100.000 unique words

- The model lives in a 10D hypercube where each dimension has 100.000 slots
- Model training \leftrightarrow assigning a probability to each of the 100.000¹⁰ slots
- <u>Probability mass vanishes</u> \rightarrow more data is needed to fill the huge space
- The more data, the more unique words! \rightarrow Is not going to work ...

In practice:

- Corpuses can have 10⁶ unique words
- Contexts are typically limited to size 2 (trigram model), e.g., famous Katz (1987) smoothed trigram model
- With short context length a lot of information is not captured

N-gram Language Model: Word Similarity Ignorance

Let assume we observe the following similar sentences

- Obama speaks to the media in Illinois
- The President addresses the press in Chicago

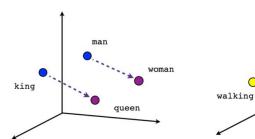
With classic one-hot vector space representations

• speaks	= [0 0 1 0 0 0 0 0]	speaks <i>L</i> addresses
 addresses 	= [0 0 0 0 0 0 1 0]	
• obama	= [0 0 0 0 0 1 0 0]	obama⊥president
 president 	= [0 0 0 1 0 0 0 0]	oballia I president
 illinois 	= [10000000]	
 chicago 	= [01000000]	illinois L chicago

Word pairs share no similarity, and we need word similarity to generalize

Embedding

Any technique mapping a word (or phrase) from it's original high-dimensional input space (the body of all words) to a lower-dimensional numerical vector space so one *embeds* the word in a different space



swimming

0

Male-Female

Verb tense

Closer points are closer in meaning and they form clusters ...

Ankara

Spair Italy

Turkey

Russi

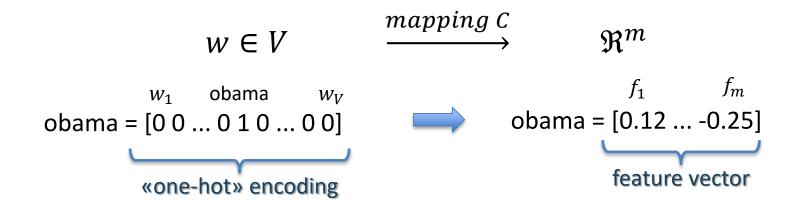
Chin

ody part

feelin

Word Embedding: Distributed Representation

Each unique word w in a vocabulary V (typically $||V|| > 10^6$) is mapped to a continuous m-dimensional space (typically 100 < m < 500)



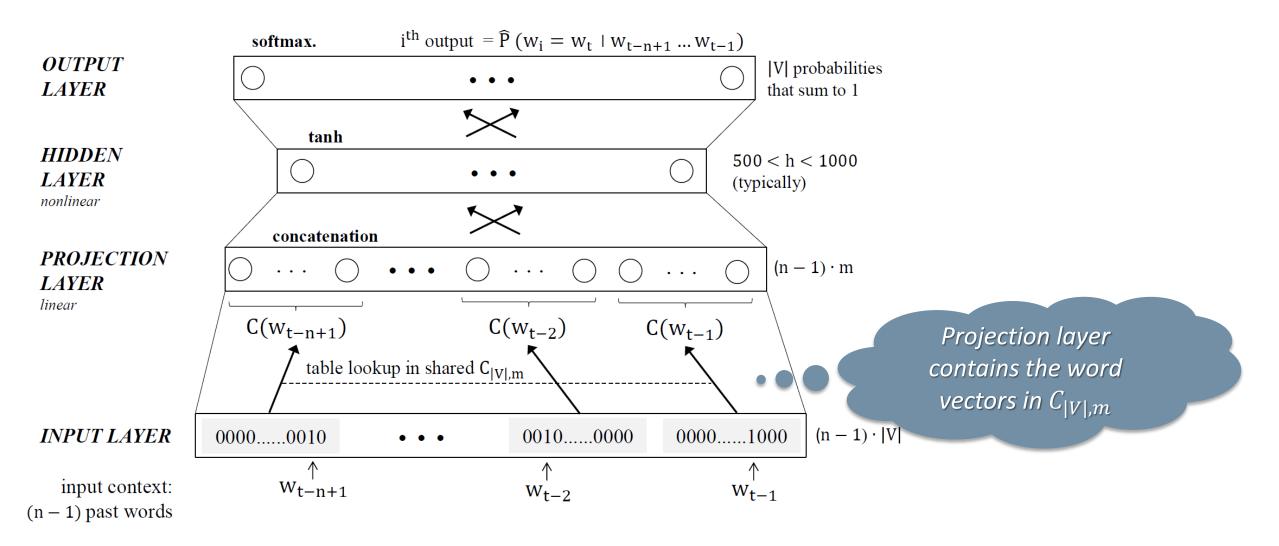
Fighting the curse of dimensionality with:

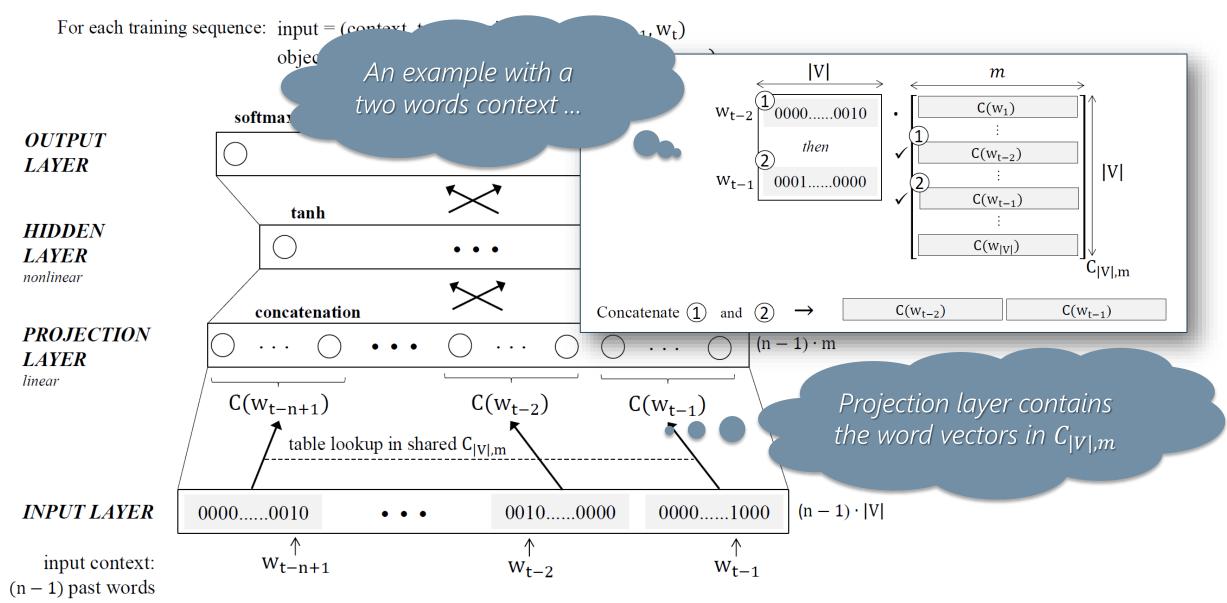
- Compression (dimensionality reduction)
- Smoothing (discrete to continuous)
- Densification (*sparse to dense*)

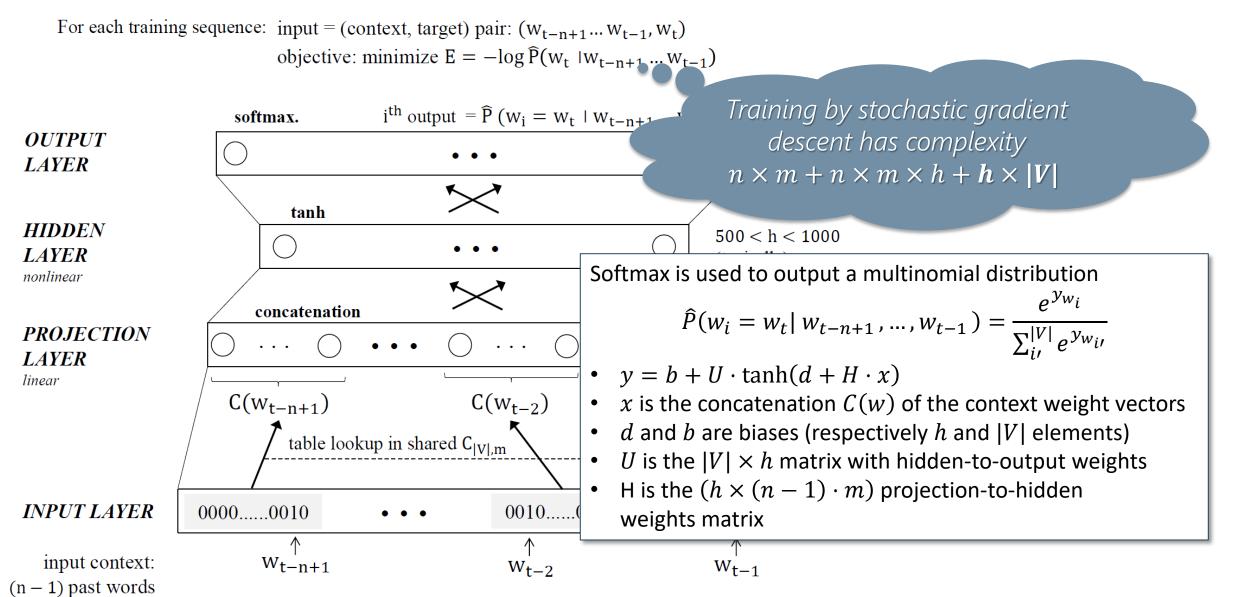
Similar words should end up to be close to each other in the feature space ...

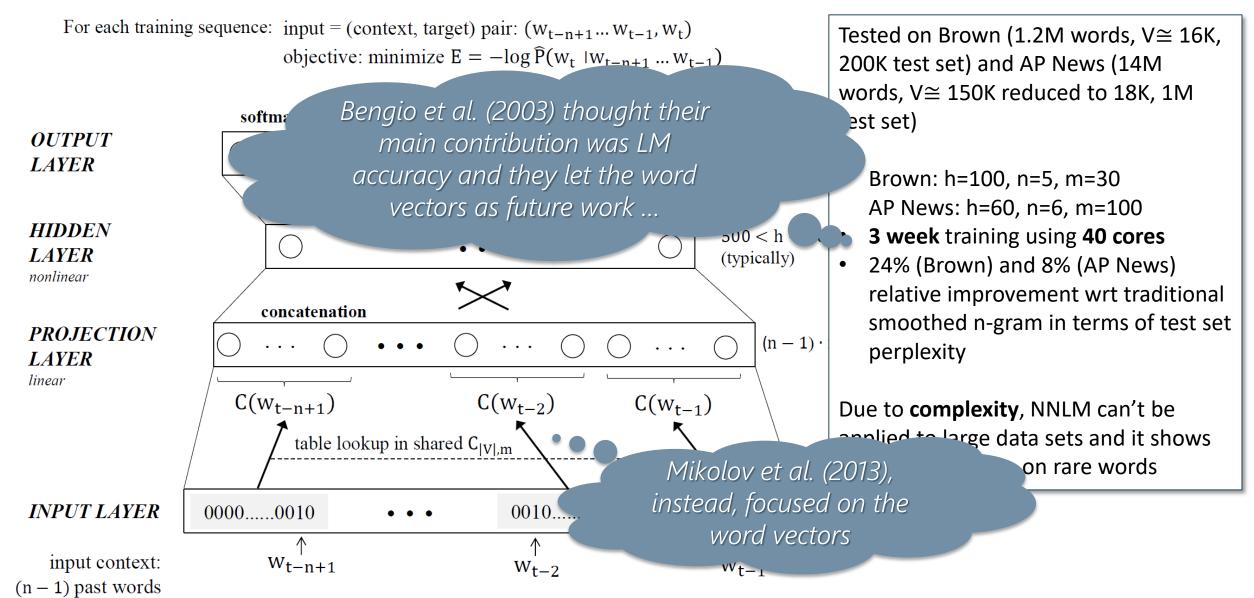
For each training sequence: input = (context, target) pair: $(w_{t-n+1}...w_{t-1}, w_t)$

objective: minimize $E = -\log \widehat{P}(w_t | w_{t-n+1} ... w_{t-1})$









Google's word2vec (Mikolov et al. 2013a)

Idea: achieve better performance allowing a simpler (shallower) model to be trained on much larger amounts of data

- No hidden layer (leads to 1000X speed up)
- Projection layer is shared (not just the weight n
- Context contain words both from history and future

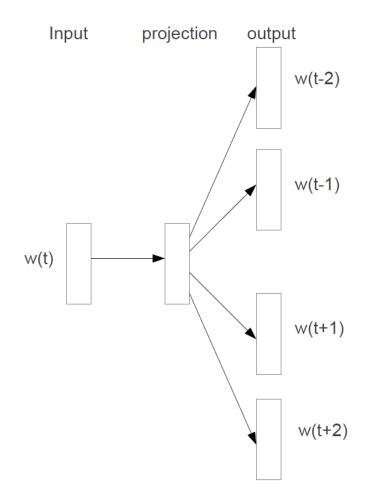
«You shall know a word by the company it keeps» John R. Firth, 1957:11.

...Pelé has called **Neymar** an excellent player...

...At the age of just 22 years, **Neymar** had scored 40 goals in 58 internationals... ...occasionally as an attacking midfielder, **Neymar** was called a true phenomenon...

These words will represent Neymar

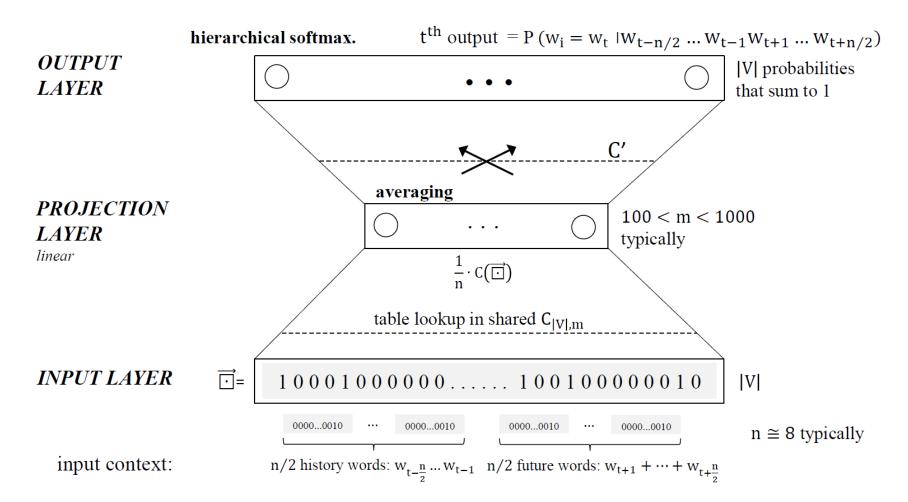
Google word2vec Flavors

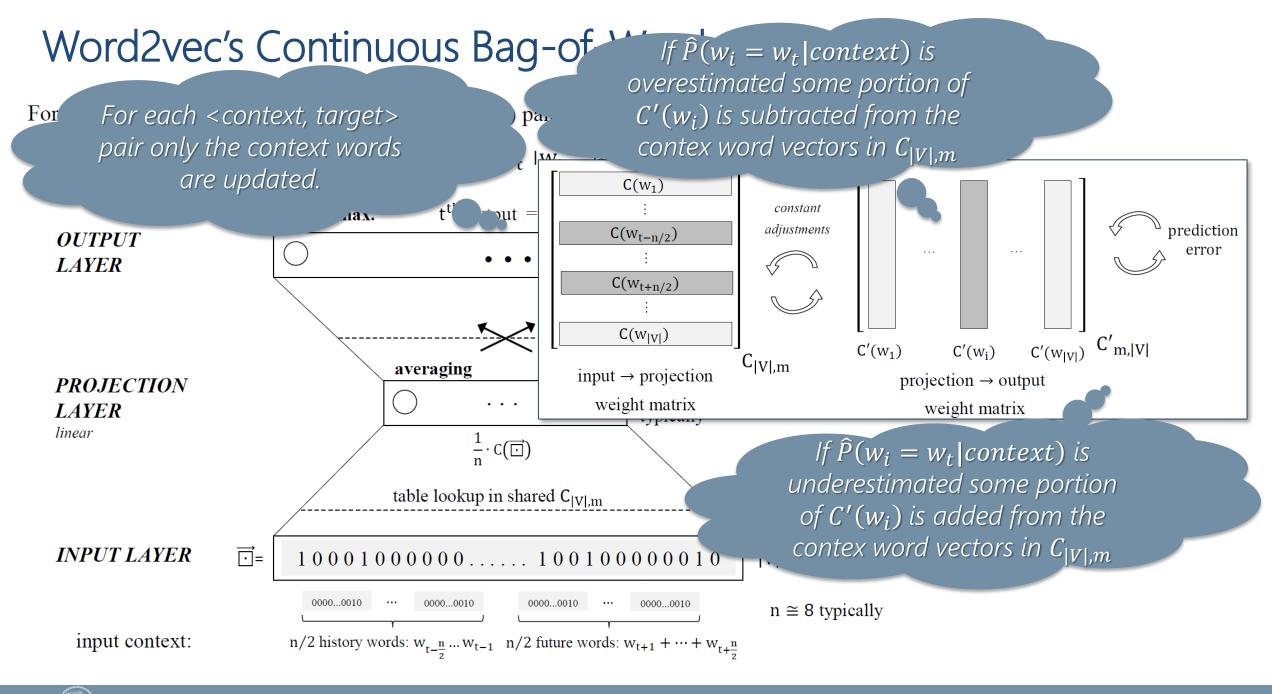


Skip-gram architecture

Word2vec's Continuous Bag-of-Words (CBOW)

For each training sequence: input = (context, target) pair: $(w_{t-\frac{n}{2}} \dots w_{t-1} w_{t+1} \dots w_{t+\frac{n}{2}}, w_t)$ objective: minimize $E = -\log \widehat{P}(w_t | w_{t-n/2} \dots w_{t-1} w_{t+1} \dots w_{t+n/2})$





Word2vec facts

Word2vec shows significant improvements w.r.t. the NNML

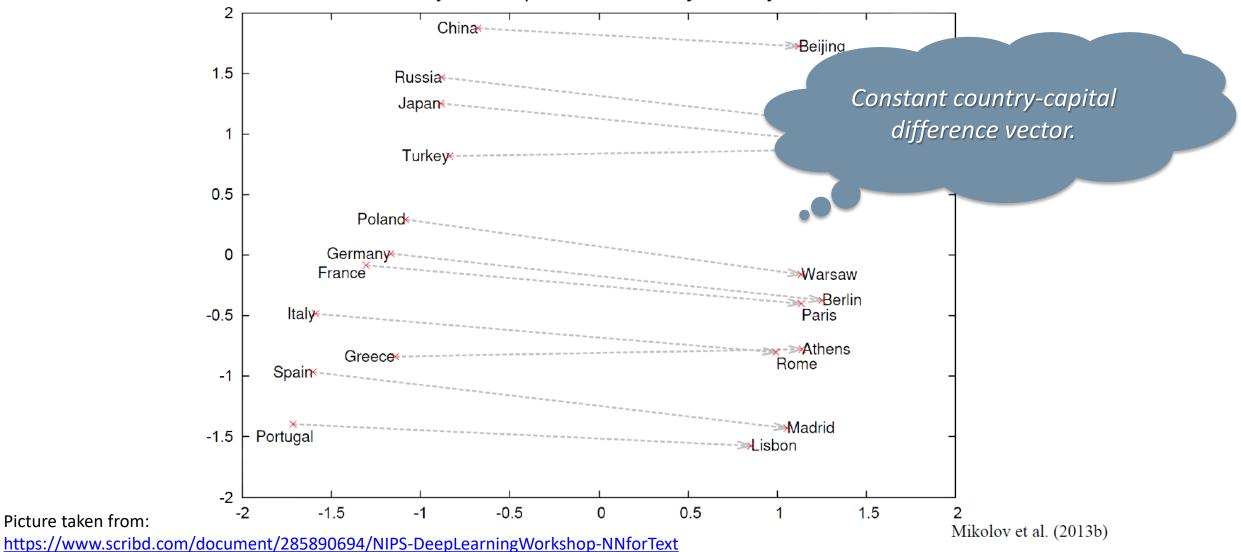
- Complexity is $n \times m + m \times log|V|$ (Mikolov et al. 2013a)
- On Google news 6B words training corpus, with $|V| \sim 10^6$
 - CBOW with m=1000 took 2 days to train on 140 cores
 - Skip-gram with m=1000 took 2.5 days on 125 cores
 - NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m=100 only!
- word2vec training speed \cong 100K-5M words/s
- Best NNLM: 12.3% overall accuracy vs. Word2vec (with Skip-gram): 53.3%

Capital-Country	Past tense	Superlative	Male-Female	Opposite
Athens: Greece	walking: walked	easy: easiest	brother: sister	ethical: unethical

Adapted from Mikolov et al. (2013a)

Regularities in word2vec Embedding Space

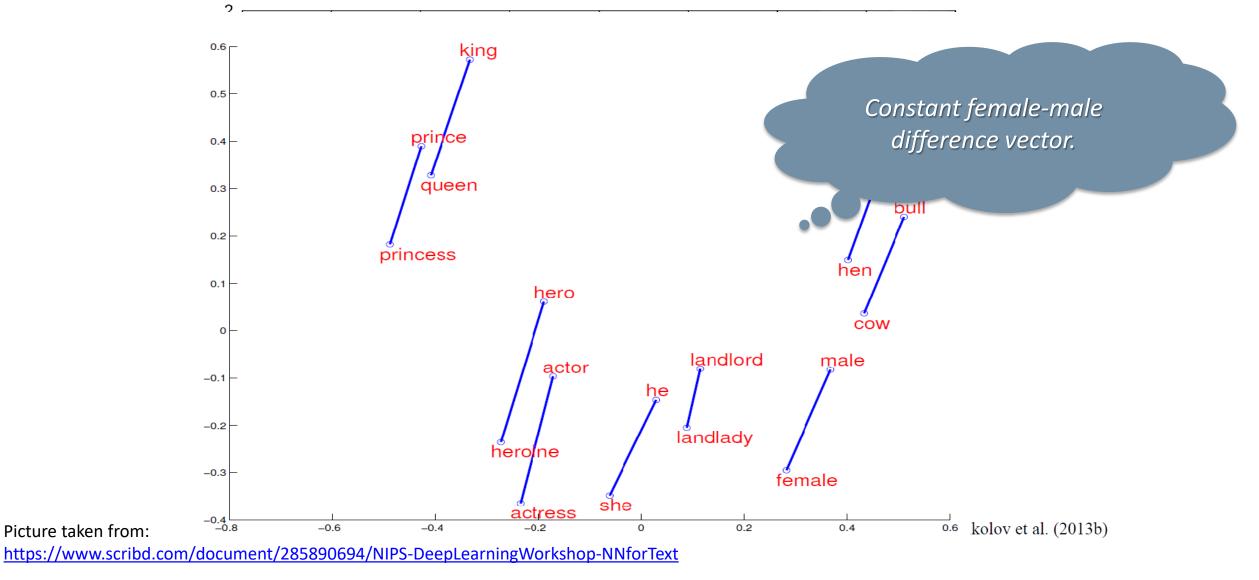
Country and Capital Vectors Projected by PCA



Picture taken from:

Regularities in word2vec Embedding Space

Country and Capital Vectors Projected by PCA



Regularities in word2vec Embedding Space

Vector operations are supported make «intuitive sense»:

111

• $w_{king} - w_{man} + w_{woman} \cong w_{queen}$

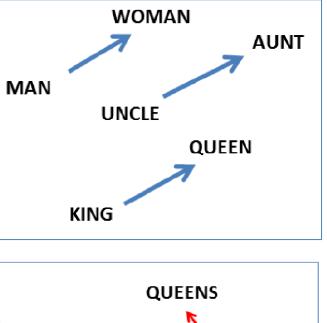
•
$$w_{paris} - w_{france} + w_{italy} \cong w_{rome}$$

- $w_{windows} w_{microsoft} + w_{google} \cong w_{android}$
- $w_{einstein} w_{scientist} + w_{painter} \cong w_{picasso}$

•
$$w_{his} - w_{he} + w_{she} \cong w_{her}$$

•
$$w_{cu} - w_{copper} + w_{gold} \approx w_{copper}$$

«You shall know a word by the company it keeps» John R. Firth, 1957:11.



INGS

KING

Picture taken from:

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-mmorles

QUEEN

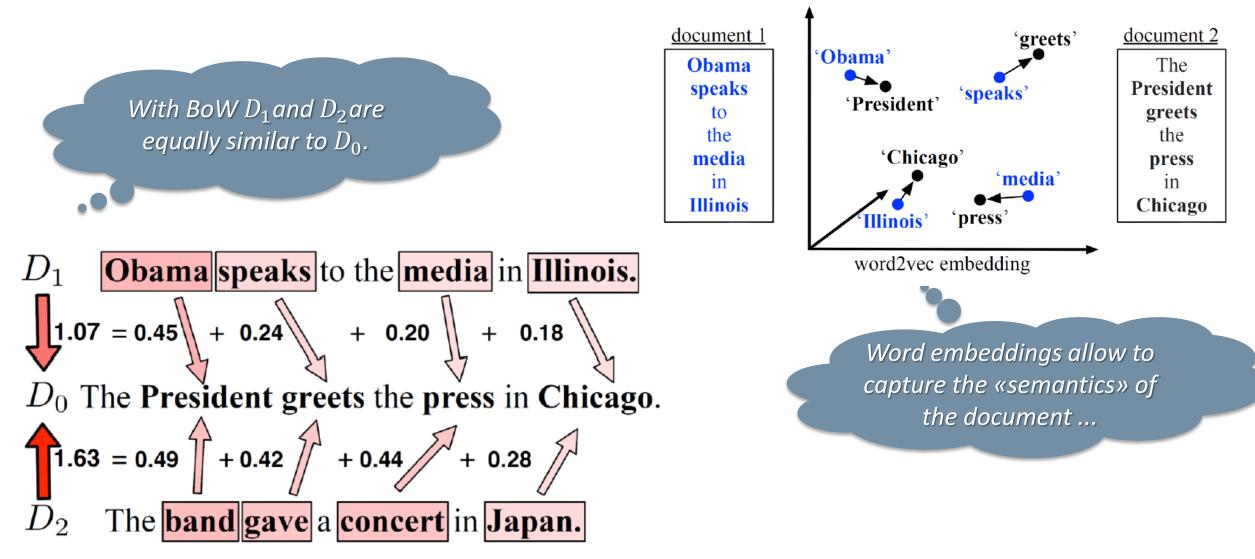
Applications of word2vec in Information Retrieval

Query: "restaurants in mountain view that are not very good" Phrases: "restaurants in (mountain view) that are (not very good)" Vectors: "restaurants+in+(mountain view)+that+are+(not very good)"

Expression	Nearest tokens	
Czech + currency	koruna, Czech crown, Polish zloty, CTK	
Vietnam + capital	Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese	
German + airlines	airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa	
Russian + river	Moscow, Volga River, upriver, Russia	
French + actress	Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg	

(Simple and efficient, but will not work for long sentences or documents)

Applications of word2vec in Document Classification/Similarity



Applications of word2vec in Sentiment Analysis

«You shall know a word by the company it keeps» John R. Firth, 1957:11.

No need for classifiers, just use cosine distance

• • •	Enter word or sentence (EXII to break): sad		
	Word: sad Position in vocabulary: 4067		
Cosine distance	Word		
0.727309	saddening		
	Sad		
0.660439	saddened		
0.657351	heartbreaking		
0.650732	disheartening		
0.648706	Meny Friedman		
0.647586	parishioner_Pat_Patello		
0.640712			
0.639909	distressing		
0.635772	reminders_bobbing		
0.635577	Turkoman Shiites		
0.634551	saddest		
0.627209	unfortunate		
0.619405	sorry		
0.617521	bittersweet		
0.611279	tragic		
0.603472	regretful		

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

GloVe makes explicit what word2vec does implicitly

- Encodes meaning as vector offsets in an embedding space
- Meaning is encoded by ratios of co-occurrece probabilities

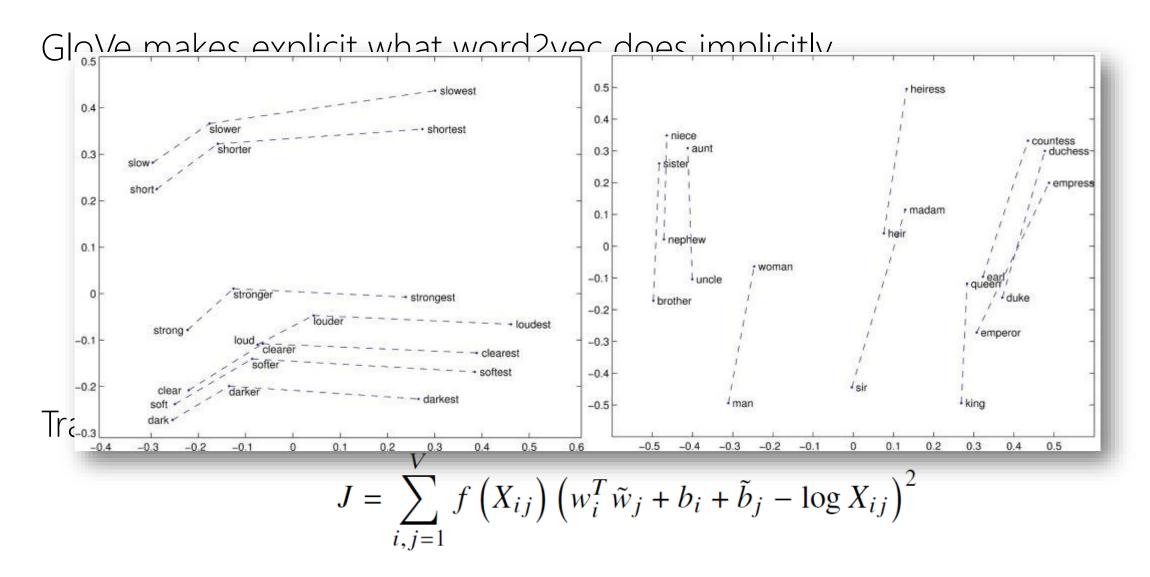
Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	$1.9 imes 10^{-4}$	6.6×10^{-5}	$3.0 imes 10^{-3}$	1.7×10^{-5}
P(k steam)	$2.2 imes 10^{-5}$	$7.8 imes 10^{-4}$	$2.2 imes 10^{-3}$	
P(k ice)/P(k steam)	8.9	8.5×10^{-2}		Refer to Pennington et paper for details on th

loss function ...

Trained by weighted least squares

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)



Nearest Neighbours with GloVe

What are the closest words to the target word *frog*:

1.Frog
2.Frogs
3.Toad
4.Litoria
5.Leptodactylidae
6.Rana
7.Lizard
8.Eleutherodactylus

5. rana

4. leptodactylidae

7. eleutherodactylus

