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Recall Machine Learning Paradigms

Immagine you have a certain experience E, and let's name it

D = X1, X2, x3, vy XN

* Supervised learning: given the desired outputs ty, ty, t3,...,ty learn to
produce the correct output given a new set of input

* Unsupervised learning: exploit regularities in D to build a representation
to be used for reasoning or prediction

* Reinforcement learning: producing actions a4, a,, as, ...,
the environment, and receiving rewards ry, 1,73, ..., T
to maximize rewards in the long term

Haven’t seen much
of it, is it?

This course focuses mainly on Supervised and Unsupervised Learning ...
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Neural Autoencoder Recall

Network trained to output the input (i.e., to learn the identity function)
* Limited number of units in hidden layers (compressed representation)
* (Constrain the representation to be sparse (sparse representation)
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Word Embedding Motivation

Natural language processing treats words as discrete atomic symbols

° ‘cat' is encoded as Id537 ‘e

* 'dog' is encoded as 1d143 IS ) @
dictionary....

A document becomes
a Bag of Words

Sparse and high
dimenstonal -> Curse
of Dimensionality!

Word, context, or
document vectors

DENSE DENSE SPARSE

Audio Spectrogram Image pixe
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Encoding Text is a Serious Thing

Performance of real-world applications (e.g., chatbot, document
classifiers, information retrieval systems) depends on input encoding:

Local representations
e N _g rams Language Model

* Bag-of-words
* 7-of-N coding

Continuous representations
° Latent Semantic Analysis
* Latent Dirichlet Allocation
* Distributed Representations
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Determine P(s = wy, ..., Wy) in some domain of interest

K
P(sy) = 1_[ P(w;| wy, c..,Wi_1)
i

In traditional n-gram language models “the probability of a word
depends only on the context of n-1 previous words”

k
p(sk) — HP(Wll Wi-n+1, ""Wi—l)

l
Typical ML-smoothing learning process (e.g., Katz 1987):

AWi_nt1,-oWi—1 Wi

« compute P(w;| w;_ v, Wi_q ) =
il Wicng1, s Wiq HWi_ 41 reoWioq

* smooth to avoid zero probabilities




N-gram Language Model: Curse of Dimensionality

Let's assume a 10-gram LM on a corpus of 100.000 unique words
* The model lives in a 10D hypercube where each dimension has 100.000 slots
* Model training « assigning a probability to each of the 100.000' slots
* Probability mass vanishes — more data is needed to fill the huge space
° The more data, the more unigue words! — Is not going to work ...

In practice:
* Corpuses can have 10° unique words

* Contexts are typically limited to size 2 (trigram model),
e.g., famous Katz (1987) smoothed trigram model

* With short context length a lot of information is not captured
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N-gram Language Model: Word Similarity Ignorance

Let assume we observe the following similar sentences
* Obama speaks to the media in lllinois
* The Presiaent addresses the press in Chicago

With classic one-hot vector space representations

* speaks =[0010..0000

* addresses = [0000..0010 - speaks 1 addresses
*obama = [0000..0100]

* president = [00071..0000] - obama 1 president
* illinois - [1000..0000]]

* chicago ~[0100..0000 - illinois L chicago

Word pairs share no similarity, and we need word similarity to generalize
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Embedding

Any technigue mapping a word (or phrase) ¥ = body part
from it's original high-dimensional input . "5i» ¥ foodltl =
space (the body of all words) to a city ..?‘ WY N AR TR
. . . 8 4 o < ) »
lower-dimensional numerical vector space - ;2" ¢ o travel gl
SO one embeds the word in a different space  =.¥ ~-° o o
o e s Oy Aazuad Rt e
@mnyim $ ° ¢ . f o
e fi? s‘feeling
K } ; B SO v o GO :
S S el 8T e *
ST S ETT o ——— . 4 1
© : P
Male-Female . e . ..5
Closer points are closer in v feléflye
meaning and. they form v et

clusters ...

T
o S,

(7)) POLITECNICO MILANO 1863



Word Embedding: Distributed Representation

Fach unique word w in a vocabulary V (typically |[V]| > 10°) is mapped
to a continuous m-dimensional space (typically 100 < m < 500)

mapping C

wEevV R™M
Wy obama Wy fi fm
obama=[00...010...00] m=) obama=[0.12...-0.25]
\ Y J \ Y )
«one-hot» encoding feature vector

Fighting the curse of dimensionality with:
* Compression (dimensionality reduction) Similar words <hould end

* Smoothing (discrete to continuous) up to be close to each
* Densification (sparse to dense) other in the feature space...
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Neural Net Language Model (Benaio et al. 2003)

For each training sequence: input = (context, target) pair: (We_p4q ... Wi—1, We)

objective: minimize E = —log P(W, IW_p4q oo Wee1)
softmax. i output =P (W; = Wy | We_ptq - We—q)
oureur |V| probabilities
LAYER O *te O that sum to 1
tanh ><
HIDDEN 500 < h < 1000
LAYER O e O (typically)
nonlinear
concatenation ><
PROJECTION
... e o @ ... (Il —1)'m
linear 7 ) ' L v '
C(Wt-n+1) C(wy_3) C(wi_q) Projection layer
/i&}?!i%?ﬂ%}tl@}f}il}flf_eﬁl_?nf_u._m_\ ________________ \ 'Y ) consuing the word
vectors in Ciy|m
INPUT LAYER 0000......0010 o o o 0010......0000 0000...... :
. 0 0 0
mput context: Win+1 Wi_o Wi_q

(n — 1) past words
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Neural Net Language Model (Bengio et al. 2003)

For each training sequence: input =

An example with a VI m
two words context ... W2 1 0000 0010 ‘ C(‘{"l) |
OUTPUT e 1) :
LAYER w 0001......0000 ‘/1 C(W:t_Z) ‘ Vi
t—1| 0001..... 2 :
tanh >< v T C(W:t—l) ‘
HIDDEN | - : |
LAYER O e oo I (Wiv)) ]
nonlinear CIVI,m
concatenation >< Concatenate (1) and 2) — | C(we—2) | Cwe—1) |
PROJECTION
LAYER O - 0O O
linear v , * ‘ T T
C(Wt-n+1) C(Wi—2) C(We-1) ~rojection Layer contd
/ table lookup in shared C|V|,m\ e . c Word vecto
INPUT LAYER 0000......0010 e o 0010......0000 0000......1000 | (n—1)-]V|
. 0 0 0
mput context: Wi_n+1 Wi_» Wi_q

(n — 1) past words
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Neural Net Language Model (Bengio et al. 2003)

For each training sequence: input = (context, target) pair: (We_p41... We_1, W)

objective: minimize E = —log P(w, Wit gy W

_1)

softmax. i™ gutput = P (w; = Wy | Wy, lraining by stochastic gradient

OUTPUT O . descent has complexity
LAYER nXm+nXmXh+ hX|V]
tanh ><
HIDDEN 500 < h < 1000
LAYER O ®* O o m . a4
nonlinear Softmax is used to output a multinomial distribution
concatenation >< P‘ (W —w | w w ) — eywi
PROJECTION O v O eee O O LT T e L SV vy,
LAYER v
linear ‘ , , ‘ 1 ey = b+ U- tanh(d + H - X)
C(Wi—pt1) C(wi_z) |+ xisthe concatenation C(w) of the context weight vectors
table lookup in shared Cpy| e d z_and b are biases (re.spe.ctlve.ly h and |V| elemen.ts)
---------------------------------------------- * Uisthe |V| X h matrix with hidden-to-output weights
* Histhe (h X (n — 1) - m) projection-to-hidden
INPUT LAYER | 0000......0010 I 0010....0 " \weights matrix
. ‘ 0 1t T
mput context: Wi_n+1 Wi_o Wi_q

(n — 1) past words
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Neural Net Language Model (Bengio et al. 2003)

For each training sequence: input = (context, target) pair: (We_p41... We_1, W)

Tested on Brown (1.2M words, V= 16K,
200K test set) and AP News (14M
words, V= 150K reduced to 18K, 1M

objective: minimize E = —log P(w, Iw e Wi

Bengio et al. (2003) thought their
OUTPUT main contribution was LM
LAYER accuracy and they let the word Brown: h=100, n=5, m=30

vectors as future work ... AP News: h=60, n=6, m=100
HIDDEN O 00 <h 3 week training using 40 cores
LAYER (typically) 24% (Brown) and 8% (AP News)
nonlinear
>< relative improvement wrt traditional
concatenation smoothed n-gram in terms of test set
PROJECTION .
LAYER o - O oo O - O O - O |1 perplexity
linear . . a \ . ;o r 4
C(Wt-n+1) C(We-2) C(we_q) Due to complexity, NNLM can’t be
table lookup in shared Cyjm \ * @ e data sets and it shows
""""""""""""""""""""""""" olov et a 0 n rare words
INPUT LAYER | 0000.....0010 ¢ o 0010. cUd, [OCUSEd O C
. 0 0 org /8eie
mput context: Wi_n+1 Wi_> —

(n — 1) past words
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Google’'s word2vec (Mikolov et al. 2013a)

ldea. achieve better performance allowing a simpler (shallower) model
to be trained on much larger amounts of data

* No hidden layer (leads to 1000X speed up) «You shall know a word
by the company. it keeps»
John R. Firth, 1957:71.

* Projection layer is shared (not just the weight

* Context contain words both from history and futtre
®
L

..Pelé has called Neymar an excellent player..
..At the age of just 22 years, Neymar had scored 40 goals 1in 58 internationals..
..occasionally as an attacking midfielder, Neymar was called a true phenomenon..
\ __‘.'

These words will represent Neymar —
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Google word2vec Flavors

Input projection  output

w(t-2)

w(t-1)

wit) | ——»

w(t+1)

7\

w(t+2)

Skip-gram architecture
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Word2vec's Continuous Bag-of-Words (CBOW)

For each training sequence:  mput = (context, target) pair: (W,_n ... We_; Weyq ... W, 0, Wy)
2 2
objective: minimize E = —logﬁ(wt IWe_n/2 e Wem 1 Wegq oo Wt+n/2)
hierarchical softmax. tth output =P (W; = Wi IW¢_p /2 ... Wi 1Wegq . Wign2)
ourrPUT O O |V| probabilities
LAYER ¢ that sum to 1
averaging
PROJECTION O - (O | 100 < m <1000
LAYER typically
linear 1 .
—- (@)
table lookup in shared Cyy|
INPUTLAYER ~ [=| 10001000000...... 100100000010 | [V
'. 0000...0010 1 0000...0010 ! 1 0000...0010 T 0000...0010 : n= 8 fypically
mput context: n/2 history words: w_n..w_; n/2 future words: Weyy + 4+ W, n
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Word2vec's Continuous Bag-Olgiiliaaei= 202 5%

overestimated some portion of

For each <context, target> : C"(w;) Is subtracted from the
pair only the context words e COntex word vectors in Ciym
dre updated. [ ‘
: constant
OUTPUT - adjustments ﬁ prediction
error
LAYER g S
. —— CWiw) | : o
i _ _Clvl Ctwy) Cw)  C'(wyp) ~ mlVl
PROJECTION i input — projection . projection — output
LAYER O T weight matrix weight matrix
linear 1 . N g . -
5 (@) If P(w; = wy|context) is
wable lookun in shared C underestimated Some portion
__________________________ pmshared svim____________ ; -
of C'(w;) (s added from the
INPUTLAYER =] 10001000000...... 100100000010 contex word Vectors in Cyjm
l. 0000...0010 0000...0010 ! 1 0000...0010 0000...0010 i n= 8 ‘[yplcally
mput context: n/2 history words: w,_n...wy_; n/2 future words: Wi,y + +++ W, n
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Word2vec facts

Word2vec shows significant improvements w.r.t. the NNML
° Complexity isn xm +m X log|V| (Mikolov et al. 2013a)

* On Google news 6B words training corpus, with |V| ~ 10°
«  CBOW with m=1000 took 2 days to train on 140 cores

 Skip-gram with m=1000 took 2.5 days on 125 cores
* NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m=100 only!

* wordZ2vec training speed = 100K-5M words/s
* Best NNLM: 12.3% overall accuracy vs. Word2vec (with Skip-gram): 53.3%

Capital-Country | Past tense Superlative Male-Female Opposite

Athens: Greece | walking: walked | easy: easiest brother: sister ethical: unethical

Adapted from Mikolov et al. (2013a)
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Regularities in word2vec Embedding Space

Country and Capital Vectors Projected by PCA

2 T T ‘ | T T
China<
Beijing
1.5 1 Russia
Japan« Constant country-capital
1 b difference vector.
Turkey«
0.5 F
Poland: ..
0 Germany« -
France Warsaw
s —»Berlin
0.5 + ltaly< Paris .
Greeces w - =»Athens
1 L Spain¢ Rome |
- *Madrid
-1.5 | Portugal Lisbon -
_2 | | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Picture taken from:

Mikol tal. (2013b
https://www.scribd.com/document/285890694/NIPS-DeeplLearningWorkshop-NNforText olovetal. ( )
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https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Regularities in word?vec Fmbeddina Snace
Country and Capital Vectors Projected by PCA

2

oer king
05—
Constant female-male
041 prirfce difference vector.
0.3 queen
0.2
princess
o1
ero
ol cow
ctor landlord male
—0.1— he
—-0.2—
landlady
hero/ne
—0.3—
female
oa . | actress °"¢ | . |
Picture taken from: -0.8 -0.6 0.4 —-0.2 o 0.2 0.4 06 kolov et al. (2013b)

https://www.scribd.com/document/285890694/NIPS-DeeplLearningWorkshop-NNforText
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https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Regularities in word2vec Embedding Space

Vector operations are supported make «intuitive sense»:

WOMAN
/ AUNT

‘ Wking — Wman T Wyoman = Waueen MAN /
¢ w —w +w ~ W UNCLE

paris france italy = “rome QUEEN
° Wyindows — Wiicrosoft + Wgoogle = Wandroid

~ KING
* Weinstein — Wscientist T Wpainter — Wpicasso
o R ~
Whis — Whe T+ Wshe = Wher QUEENS
© Wey — Weopper + Wyold e
o «You shall know a word by
the company. it keeps» QUEEN

John R. Firth, 1957:11.

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearning\WorkshOp=ivinior |6 KING
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https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Applications of word2vec in Information Retrieval

Query: "restaurants in mountain view that are not very good”
Phrases: “restaurants in (mountain view) that are (not very good)”
Vectors: “restaurants+in+(mountain view)+that+are+(not very good)”

Expression Nearest tokens
Czech + currency koruna, Czech crown, Polish zloty, CTK
Vietnam + capital Hanoi, Ho Chi Minh City, Viet Nam, Viethamese

German + airlines | airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa

Russian + river Moscow, Volga River, upriver, Russia

French + actress Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg

(Simple and efficient, but will not work for long sentences or documents)
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Applications of word2vec in Document Classification/Similarity

A

document | ‘greets’ document 2

Obama ‘Ob:‘ia’ ./. The

With BoW Dyand D,are to ‘President’ greets
equally similar to Dy. the the

media Chlcago press
in medla in

«® linois 0‘ Chicago
Tlinois’ press

Obama |speaks to themedia|in|Illinois. word2vec embedding

1.07 = 0.45 +024 + 020 \| + 0.18 '.. :
Word embeddings allow to

o The Presndent greets the press in Chicago. capture the «semantics» of

1153_049ﬁ+042f +04%+ ozaf

D5 The |band|gave|a|concert|in [Japan.

the document ...
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Applications of word2vec in Sentiment Analysis

«You shall know a word by
the company. it keeps»
John R. Firth, 1957:11.

No need for classifiers, just use cosine distance.

regrecful



GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

GloVe makes explicit what word2vec does implicitly
* Encodes meaning as vector offsets in an embedding space
* Meaning is encoded by ratios of co-occurrece probabilities

Probability and Ratio | &k = solid k = gas k = water k = fashion

P(k|ice) 1.9°x107% 66 107> 30x10° 17x107°

P(k|steam) 22510°° TR x10* 2.2 10—3 g = [
; t ton et al.

P(klice)/P(k|steam) 8.9 8.5 x 1072 ool ot

paper for details on this
loss function ...

Trained by weighted least squares
V

J = Z f (X,jj) (W?ﬁ;‘j + bi + Ej — log ij)z
i,j=1
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

G|m\/a Mmal-ac avnlicit what \wwnardAOviar Anac imnlicithy
05 T T T L] 1 ] | ] T 1 T ] T T

1 | I ! 1
_ . — —slowest 05 + heiress 1
04f B e - ;
i anc 041
- ‘slower = shortest - I
G R ey | / * countess
03k - _ 7 shorter 4 03 *aunt ) ! ;duchess
sows . 14istet ' -
ahons 0.2 o X ¢ ! pempresy
0.2+ i by ” i Py
0.1} M , tmadam poi -
: [ ) ! i :II
| @ir iY
0.1+ 4 of |- Tphew / . .
I { ! £
: A +woman i :
A =0.1 | uncle | ' rqueer / ]
0} P e strongest ’ ' brother f : I /’ "y
s Toud 0.2 ! / I /
s it o T e e R SRR S / |
strong < -~ loudest ,' / | ‘emperor
0.1} BOUB oo 1 -0.3F ) -1
Ldeansr T T T T~ — = e pr— f ’ '
< eoffer = — = = — — — — _ ] ]
L T TS s softest 0.4} I ! ' i
-0.2F clear ;,”, . 7o . f Isir [
soft = 7 =~ - darkest 05k {man king
-
Tre
(—0.3 1 [ i3 1 1 1 1 1 L 1 1 L 1 | i 1 1 1 1
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Nearest Neighbours with GloVe

What are the closest words to the target word frog:

1.Frog

2.Frogs

3.Toad

4.Litoria
5.Leptodactylidae
6.Rana

/.Lizard
8.Eleutherodactylus

7. eleutherodactylus
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