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Machine Learning

Assessing Model Accuracy
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Quality of Fit 2

o Suppose we have a regression problem.

= A common accuracy measure is mean squared error (MSE)
1Q o
MSE =~ (¥; = ¥:)
i=1

= Where Y. is the prediction our method gives for the
observation in our training data.

o Training is designed to make MSE small on training data, but ...

* What we really care about is how well the method works on
new data. We call this new data “Test Data”.

* There is no guarantee that the method with the smallest
training MSE will have the smallest test (i.e., new data) MSE.
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Training vs. Test Mean Squared Error 3

o The more flexible a method is, the lower its training MSE will be
i.e., it will “fit” or explain the training data very well.

= Side Note: More Flexible methods (such as splines) can
generate a wider range of possible shapes to estimate f as
compared to less flexible and more restrictive methods (such
as linear regression). The less flexible the method, the easier
to interpret the model. Thus, there is a trade-off between
flexibility and model interpretability.

o However, the test MSE may in fact be higher for a more flexible
method than for a simple approach like linear regression

POLITECNICO DI MILANO

Prof. Matteo Matteucci — Machine Learning - I




Example | 4
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Bias/ Variance Tradeoff 7

o Test vs. Training MSFE'’s illustrates a very important tradeoff that
governs the choice of statistical learning methods; two competing
forces that govern the choice of learning method

= Bias refers to the error that is introduced by modeling
a real life problem by a much simpler problem

* E.g, linear regression assumes that there is a linear relationship
between Y and X. In real life, some bias will be present

* The more flexible/complex a method is the less bias it will have

= Variance refers to how much your estimate for f would
change by if you had a different training data set

* Generally, the more flexible a method is the more variance it has.
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Bias/ Variance Tradeoff 8

Low Variance High Variance

Low Bias

High Bias
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New Notation (from ESL) 9
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Bias-Variance in Regression (Part |) 10

o Let consider the Expected Squared Prediction Error (over any

possible data) |

MSE=—N(t —+v.)
MZ(; )

E{MSE} = E{ii ) } NZE{rﬂ }

<7 =1

o Let apply an “augmentation trick” to the expectation
i} =i+ 13
= E{(t, = £) |+ E{(fi =) |+ 2E{(f =2 )0, - £)}
= E{e*}+ E{(f -3, + ofa al
o Let notice that

= Being f deterministic we have E{/:|= 7, E\r,}=/ and E{/*]=f°
= Noise is independence E{y1,}=Ely,(f +¢)} = Epfi+yel =E{nf}+0
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Bias-Variance in Regression (Part 2) I

o From the previous we get something already know

E{(;}_ _},},)z} = E{Ez} + E{(ﬂ _J"f]z}

o Lets check the second expected value

\2

£ -} = E{(fi- B} + B}, -]
= £{(— £ )+ E{(ED ) ) |+ 2B )~ Ef )

= bias” + Vm‘{};} + 3

o Where we have, Because fis deterministic and E{E{-}} =: :
o E{fE 1} = 1)
m E{E{J;}}E} = E{y?}z E{U: —yj]z} = bias® + Vm"{}f}.}
m E {}’fj; } = [E {J"z}
« E{yEly}}=E{y}

E{(rf —yj_]z} = Var{noise} + bias” + Vm‘{yf}
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The Trade-off 12

o For any given, X=x, the expected test MSE for a new Y will be

Irreducible Error Model Variance

] 2 T~ _ _ " N
E{(rf =7 } = Var{noise} + bias™ + Var :r‘z-}
\ \
Model Bias
Expected Prediction Error

o l.e., as a method gets more complex
= Bias will decrease
= Variance will increase

= Expected Prediction Error may go up or down!
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Can we actually compute those? 13

o Knowing the model we can compute the value of EPE

= For a Linear Model

Err(zo) = E[(Y — f2)?|X = =]

-~

2
52+[f(:s:u) Ef(z:)| + |h(zo)|*?

1 1 X
v Err(x;) = — Y [f(z;) — Ef(z
N 2 o>

* For the KNN regression fit

Err(zo) = E[(Y — f1)?|X =

1’7‘
_EZ:
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Test MSE, Bias and Variance 14
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest

test MSE.
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What about Classification? 15

o For a classification problem we can use the error rate i.e.
n
Error Rate =) "1(y; = §;)/n
i=1

* Where |(yi e )7.) is an indicator function, which will give | if
the condition (Y, # V.) is correct, otherwise it gives a 0.

* The error rate represents the fraction of incorrect
classifications, or misclassifications

o The Bayes Classifier minimizes the Average Test Error Rate
max; P(Y = J| X =X;)

o The Bayes error rate refers to the lowest possible Error Rate
achievable knowing the “true” distribution of the data

1 —FE (111{1}{ Pr(Y = ,i|X))

J
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Bayes Classifier 6
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation wunill be assigned to the orange class, and the blue

background grid indicates the region in which a test observation will be assigned
to the blue class.
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K-Nearest Neighbors (KNN) 17

o The k Nearest Neighbors method is a non parametric model
often used to estimate the Bayes Classifier

* For any given X we find the k closest neighbors to X in the
training data, and examine their corresponding Y

* |f the majority of the Y’s are orange we predict orange
otherwise guess blue.

o Some notes about such a simple classifier ...
* The smaller the k, the more flexible the method will be

= KNN has “zero” training time, some cost at runtime to find
the k closest neighbors reduced by indexing

= KNN has problems in higher dimensional spaces which
require approximate methods
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KNN Example with k=3 18

FIGURE 2.14. The KNN approach, using K = 3, 1s tllustrated in a simple
sttuation with six blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label 1s desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to

the orange class.
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Simulated Data: K= 10 19

Bayes Error
Rate = 0.1304

KNN Error Qi
Rate = 0.1363 '

FIGURE 2.15. The black curve indicates the KNN decision boundary on the

data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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K=1and K=100 20

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not

sufficiently flerible. The Bayes decision boundary is shown as a purple dashed
line.
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Training vs. Test Error Rates 2
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13., as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.
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A Fundamental Picture 22

o Training errors will always decline while test errors will decline
at first (as reductions in bias dominate) but will then start to
increase again (as increases in variance dominate).

High Bias Low Bias
Low Variance High Variance

Prediction Error

Training Sample

Low High
Model Complexity
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A More Fundamental Picture
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