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Quality of Fit

o Suppose we have a regression problem. 

 A common accuracy measure is mean squared error (MSE) 

 Where     is the prediction our method gives for the 

observation in our training data.

o Training is designed to make MSE small on training data, but …

 What we really care about is how well the method works on 

new data. We call this new data “Test Data”.

 There is no guarantee that the method with the smallest 

training MSE will have the smallest test (i.e., new data) MSE. 
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Training vs. Test Mean Squared Error

o The more flexible a method is, the lower its training MSE will be 

i.e., it will “fit” or explain the training data very well.

 Side Note: More Flexible methods (such as splines) can 

generate a wider range of possible shapes to estimate f as 

compared to less flexible and more restrictive methods (such 

as linear regression). The less flexible the method, the easier 

to interpret the model. Thus, there is a trade-off between 

flexibility and model interpretability. 

o However, the test MSE may in fact be higher for a more flexible 

method than for a simple approach like linear regression 
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Example 1

Black: Truth

Orange: Linear Estimate

Blue:  smoothing spline 

Green:  smoothing spline

RED: Test MES

Grey: Training MSE

Dashed:  Minimum possible 

test MSE (irreducible error)
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Example 2 5

Black: Truth

Orange: Linear Estimate

Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES

Grey: Training MSE

Dashed:  Minimum possible 

test MSE (irreducible error)
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Example 3 6

Black: Truth

Orange: Linear Estimate

Blue:  smoothing spline

Green:  smoothing spline

RED: Test MES

Grey: Training MSE

Dashed:  Minimum possible

test MSE (irreducible error)



Prof. Matteo Matteucci – Machine Learning

Bias/ Variance Tradeoff

o Test vs. Training MSE’s illustrates a very important tradeoff that 

governs the choice of statistical learning methods; two competing 

forces that govern the choice of learning method

 Bias refers to the error that is introduced by modeling 

a real life problem by a much simpler problem

• E.g., linear regression assumes that there is a linear relationship 

between Y and X. In real life, some bias will be present

• The more flexible/complex a method is the less bias it will have

 Variance refers to how much your estimate for f would 

change by if you had a different training data set

• Generally, the more flexible a method is the more variance it has.
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Bias/ Variance Tradeoff 8
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New Notation (from ESL) 9
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Bias-Variance in Regression (Part 1)

o Let consider the Expected Squared Prediction Error (over any 

possible data)

o Let apply an “augmentation trick” to the expectation

o Let notice that

 Being f deterministic we have                ,             and 

 Noise is independence
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Bias-Variance in Regression (Part 2) 11

o From the previous we get something already know

o Lets check the second expected value

o Where we have, Because f is deterministic and                :
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The Trade-off

o For any given, X=x, the expected test MSE for a new Y will be

o I.e., as a method gets more complex 

 Bias will decrease 

 Variance will increase 

 Expected Prediction Error may go up or down!
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Can we actually compute those?

o Knowing the model we can compute the value of EPE

 For a Linear Model

 For the KNN regression fit
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Test MSE, Bias and Variance 14
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What about Classification?

o For a classification problem we can use the error rate i.e.

 Where                   is an indicator function, which will give 1 if 

the condition               is correct, otherwise it gives a 0.

 The error rate represents the fraction of incorrect 

classifications, or misclassifications 

o The Bayes Classifier minimizes the Average Test Error Rate

o The Bayes error rate refers to the lowest possible Error Rate 

achievable knowing the “true” distribution of the data
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Bayes Classifier 16

Bayes Decision 

Boundary

Bayes Error 

Rate = 0.1304
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K-Nearest Neighbors (KNN)

o The k Nearest Neighbors method is a non parametric model 

often used to estimate the Bayes Classifier

 For any given X we find the k closest neighbors to X in the 

training data, and examine their corresponding Y

 If the majority of the Y’s are orange we predict orange 

otherwise guess blue.

o Some notes about such a simple classifier …

 The smaller the k, the more flexible the method will be

 KNN has “zero” training time, some cost at runtime to find 

the k closest neighbors reduced by indexing

 KNN has problems in higher dimensional spaces which 

require approximate methods
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KNN Example with k = 3 18
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Simulated Data: K = 10 19

Bayes Error 

Rate = 0.1304

KNN Error 

Rate = 0.1363
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K = 1 and K = 100 20
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Training vs. Test Error Rates 21
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A Fundamental Picture

o Training errors will always decline  while test errors will decline 

at first (as reductions in bias dominate) but will then start to 

increase again (as increases in variance dominate).
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A More Fundamental Picture 23


