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Let’s Recall LSTM Networks

From feed forward architecture to recurrent one
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Sequential Data Problems

Fixed-sized 

input 

to fixed-sized 

output 

(e.g. image 

classification)

Sequence output 

(e.g. image captioning 

takes an image and 

outputs a sentence of 

words). 

Sequence input (e.g. 

sentiment analysis 

where a given sentence 

is classified as 

expressing positive or 

negative sentiment).

Sequence input and 
sequence output (e.g. 
Machine Translation: an 
RNN reads a sentence in 
English and then outputs 
a sentence in French)

Synced sequence input 
and output (e.g. video 
classification where we 
wish to label each frame 
of the video)

Credits: Andrej Karpathy
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Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of 

words as output which describe it. The image has a fixed size, but the 

output has varying length.
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Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or 

words, e.g., a tweet, and classify the sequence into positive or negative 

sentiment. Input has varying lengths, output is of a fixed type and size.
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Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g., 

English, we wish to translate it in another, e.g., French. Each language has 

it’s own semantics and it has varying lengths for the same sentence. 
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Seq2Seq Model Anatomy

The Seq2Seq model follows the classical encoder decoder architecture

• At trainng time the decoder does not feed the output of each time step to the 

next; the input to the decoder time steps are the target from the training

• At inference time the decoder feeds the output of each time step as an input 

to the next one
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Seq2Seq Training Process
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Seq2Seq Inference Process
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Special Characters

<PAD>: During training, examples are fed to the network in batches. The inputs in these batches need 

to be the same width. This is used to pad shorter inputs to the same width of the batch

<EOS>: Needed for batching on the decoder side. It tells the decoder where a sentence ends, and it 

allows the decoder to indicate the same thing in its outputs as well.

<UNK>: On real data, it can vastly improve the resource efficiency to ignore words that do not show 

up often enough in your vocabulary by replace those with this character.

<SOS>/<GO>: This is the input to the first time step of the decoder to let the decoder know when to 

start generating output.

Special characters 

may vary in name ...
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Dataset Batch Preparation

1. Sample batch_size pairs of 

(source_sequence, target_sequence).

2. Append <EOS> to the source_sequence

3. Prepend <SOS> to the target_sequence

to obtain the target_input_sequence and 

append <EOS> to obtain target_output_sequence. 

4. Pad up to the max_input_length (max_target_length) 

within the batch using the <PAD> token.

5. Encode tokens based of vocabulary (or embedding)

6. Replace out of vocabulary (OOV) tokens with <UNK>. 

Compute the length of each input and target sequence in the batch. 

Vocabulary = {“<SOS>”: 00, 
“<EOS>”: 99,
“<UNK>”: 01, 
“<PAD>”: 03,
“the”: 42,
“is”: 16,
...      }
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Sequence to Sequence Modeling

Given <S, T> pairs, read S, and output T’ that matches T
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Multiple Layers and Bidirectional LSTM Networks

Acomputation graph in time with continuous transformations.
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Extending Recurrent Neural Networks

Recurrent Neural Networks have been extended with memory to cope 

with very long sequences and the encoding bottleneck …

input sequence output sequenceencoding
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Extending Recurrent Neural Networks

Recurrent Neural Networks have been extended with memory to cope 

with very long sequences and the encoding bottleneck …

https://distill.pub/2016/augmented-rnns/
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Neural Turing Machines

Neural Turing Machines combine a RNN with an external memory bank.

How do we make 

write and read 

differentiable?



18

Neural Turing Machines Idea

Neural Turing Machines challenge:

• We want to learn what to write/read but also where to write it

• Memory addresses are be fundamentally discrete 

• Write/read differentiable w.r.t the location we read from or write to

Solution: Every step, read and write everywhere, just to different extents.

Attention 

mechanism!
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Neural Turing Machines Attention

Content-based attention: searches

memory and focus on places that

match what they’re looking for

Location-based attention: allows 

relative movement in memory 

enabling the NTM to loop.
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Neural Turing Machines Extensions

NTM perform algorithms, previously beyond neural networks:

• Learn to store a long sequence in memory

• Learn to loop and repeat sequences back repeatedly

• Learn to mimic a lookup table

• Learn to sort numbers …

Some extension have been proposed to go beyond this:

• Neural GPU overcomes the NTM’s inability to add and multiply numbers

• Zaremba & Sutskever train NTMs using reinforcement learning instead of the 

differentiable read/writes used by the original

• Neural Random Access Machines work based on pointers

• Others have explored differentiable data structures, like stacks and queues

But the most interesting thing (to me) 

was the attention mechanism!
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Attention Mechanism in Seq2Seq Models

Considering the sequential dataset:

The decoder role is to model the generative probability:

In “vanilla” seq2seq models, the decoder is

conditioned initializing the initial state with last

state of the encoder. 

Works well for short and medium-length

sentences; however, for long sentences, becomes a bottleneck

Attention on the past 

hidded states used as 

dynamic memory
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Attention Mechanism in Seq2Seq Models

Let’s use the same idea of Neural Turing

Machines to get a differentiable attention

and learn where to focus attention.

Attention distribution is usually generated with 

content-based attention. 

Each item is thus weighted with the query 

response to produce a score

Scores are fed into a softmax to create the 

attention distribution
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Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where 

the weight assigned to each value is computed by a 

compatibility function:

1. Compare current target hidden state ℎ𝑡,
with source states ℎ𝑠 to derive attention

1
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Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where 

the weight assigned to each value is computed by a 

compatibility function:

2. Apply the softmax function on the attention

scores and compute the attention weights, 

one for each encoder token

1

2
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Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where 

the weight assigned to each value is computed by a 

compatibility function:

3. Compute the context vector as the weighted 

average of the source states

1

2

3
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Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where 

the weight assigned to each value is computed by a 

compatibility function:

4. Combine the context vector with current

target hidden state to yield the final

attention vector

1

2

3

4
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Attention Visualization

Alignment matrix is use to visualize attention

weights between source and target sentences.

For each decoding step, i.e., each generated

target token, describes which are the source

tokens that are more present in the weighted

sum that conditioned the decoding.

We can see attention as a tool in the 

network’s bag that, while decoding, allows

it to pay attention on different parts of the source sentence.
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Attention Visualization
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Attention Mechanism in Translation

Attention allows processing the input to pass along information about 

each word it sees, and then for generating the output to focus on words 

as they become relevant.

Check the demo!!!
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Attention Mechanism in Voice Recognition

Attention allows one RNN to process the audio and then have another 

RNN skim over it, focusing on relevant parts as it generates a transcript.

Check the 

demo!!!
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Attention Mechanism in Image Captioning

A CNN processes the image, extracting high-level features. Then an RNN 

runs, generating a description of the image based on the features. 

As it generates each word in the description, the RNN focuses on the 

CNN interpretation of the relevant parts of the image. 
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Attention in Response Generation (i.e., Chatbots)

Sources: https://blog.appliedai.com/chatbot-benefits/
https://blog.growthbot.org/chatbots-were-the-next-big-thing-what-happened
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Attention in Response Generation (i.e., Chatbots)

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Generative: encode the question into a context

vector and generate the answer word by word using 

conditioned probability distribution over answer’s 

vocabulary. E.g., an encoder-decoder model.

• Retrieval: rely on knowledge base of question-answer

pairs. When a new question comes in, inference

phase encodes it in a context vector and by using

similarity measure retrieves the top-k neighbor 

knowledge base items. 
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Attention in Response Generation (i.e., Chatbots)

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Single-turn: build the input vector by considering

the incoming question. They may lose important 

information about the history of the conversation

and generate irrelevant responses.

• Multi-turn: the input vector is built by considering

a multi-turn conversational context, containing also

incoming question. 



35

Generative Chatbots

Vinyals and Le, 2015 and Shang et al., 2015 proposed to directly apply 

sequence to sequence models to the conversation between two agents:

• The first person utters “ABC”

• The second person replies “WXYZ”

Generative chatbots use an RNN and train it to map “ABC” to “WXYZ”:

• We can borrow the model from machine translation

• A flat model simple and general

• Attention mechanisms apply as usual

How do we handle 

multi turns chat?
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Generative Hierarchical Chatbots

The idea could be concatenating multiple turns into a single long input 

sequence, but this probably results in poor performances. 

• LSTM cells often fail to catch the long term dependencies within input 

sequences that are longer than 100 tokens

• No explicit representation of turns can be exploited by the attention 

mechanism

Xing et al., in 2017, extended attention mechanism from single-turn 

response generation to a hierarchical attention mechanism

• Hierarchical attention networks (e.g., characters -> words -> sentences)

• Generate hidden representation of a sequence from contextualized words
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Hierarchical Generative Multi-turn Chatbots

GRU

inference !
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Hierarchical Generative Multi-turn Chatbots
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Hierarchical Generative Multi-turn Chatbots

We can visualize hierarchical attention weights, darker color means more 

important words or utterances.
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Hierarchical Document Classification

Hierarchical attention networks have been used for topic classification 

(e.g., Yahoo Answer data set). 

• Left document denotes Science and Mathematics; model accurately localizes 

the words zebra, stripes, camouflage, predator and corresponding sentences. 

• Right document denotes Computers and Internet; the model focuses on web, 

searches, browsers and their corresponding sentences. 
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Hierarchical Document Classification

In Sentiment Analysis, the model can select words carrying strong 

sentiment like delicious, amazing, terrible and corresponding sentences.

Sentences containing useless words like cocktails, pasta, entree are 

disregarded. 
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Attention is all you need!

NIPS 2017
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Attention is all you need!

Having seen attention is what makes things working you start wondering:

• Sequential nature precludes parallelization within training examples, which 

becomes critical at longer sequence lengths, as memory constraints limit 

batching across examples.

• Attention mechanisms have become an integral part of compelling sequence 

modeling and transduction models in various tasks. Can we base solely on 

attention mechanisms, dispensing with recurrence and convolutions entirely?

• Without recurrence, nor convolution, in order for the model to make use of 

the order of the sequence, we must inject some information about the relative 

or absolute position of the tokens in the sequence.
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Current State of the Art

There has been a running joke in the NLP community that an LSTM with 

attention will yield state-of-the-art performance on any task. 

Attention is built upon RNN …

Example: Neural Machine Translation
Attention
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Current State of the Art

There has been a running joke in the NLP community that an LSTM with 

attention will yield state-of-the-art performance on any task. 

Attention is built upon RNN …

Example: Neural Machine Translation
AttentionThe Transformer breaks 

this assumption!
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Transformer

A Transformer model is make out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding
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Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

Two types:
• learned positional embeddings (arXiv:1705.03122v2)
• Sinusoid:

Reason: no RNN to model the sequence position
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Transformer Complexity

Observations:
• Self-Attention has O(1) maximum path length

(capture long range dependency easily)

• When n<d, Self-Attention has lower
complexity per layer
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Transformer Performance

• Eng-to-De: new state-of-the-art

• Eng-to-Fr: new single-model state-of-the-art

• Less training cost
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Transformer Performance

• source: Aber ich habe es nicht hingekriegt

• expected: But I didn't handle it

• got: But I didn't <UNK> it

• source: Wir könnten zum Mars fliegen wenn wir wollen

• expected: We could go to Mars if we want

• got: We could fly to Mars when we want

• source: Dies ist nicht meine Meinung Das sind Fakten

• expected: This is not my opinion These are the facts

• got: This is not my opinion These are facts
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