
- Seq2Seq Learning Architectures-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

2

Let’s Recall LSTM Networks

From feed forward architecture to recurrent one

X0

H
id

d
en

Y0

X1
H

id
d

en

Y1

Xt

H
id

d
en

Yt

…

…

…

…

…

…

3

Let’s Recall LSTM Networks

From feed forward architecture to recurrent one

X0

LS
TM

 /
 G

R
U

Y0

X1
LS

TM
 /

 G
R

U

Y1

Xt

LS
TM

 /
 G

R
U

Yt

…

…

…

…

…

…

4

Sequential Data Problems

Fixed-sized

input

to fixed-sized

output

(e.g. image

classification)

Sequence output

(e.g. image captioning

takes an image and

outputs a sentence of

words).

Sequence input (e.g.

sentiment analysis

where a given sentence

is classified as

expressing positive or

negative sentiment).

Sequence input and
sequence output (e.g.
Machine Translation: an
RNN reads a sentence in
English and then outputs
a sentence in French)

Synced sequence input
and output (e.g. video
classification where we
wish to label each frame
of the video)

Credits: Andrej Karpathy

5

Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of

words as output which describe it. The image has a fixed size, but the

output has varying length.

6

Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or

words, e.g., a tweet, and classify the sequence into positive or negative

sentiment. Input has varying lengths, output is of a fixed type and size.

7

Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g.,

English, we wish to translate it in another, e.g., French. Each language has

it’s own semantics and it has varying lengths for the same sentence.

8

Seq2Seq Model Anatomy

The Seq2Seq model follows the classical encoder decoder architecture

• At trainng time the decoder does not feed the output of each time step to the

next; the input to the decoder time steps are the target from the training

• At inference time the decoder feeds the output of each time step as an input

to the next one

9

Seq2Seq Training Process

10

Seq2Seq Inference Process

11

Special Characters

<PAD>: During training, examples are fed to the network in batches. The inputs in these batches need

to be the same width. This is used to pad shorter inputs to the same width of the batch

<EOS>: Needed for batching on the decoder side. It tells the decoder where a sentence ends, and it

allows the decoder to indicate the same thing in its outputs as well.

<UNK>: On real data, it can vastly improve the resource efficiency to ignore words that do not show

up often enough in your vocabulary by replace those with this character.

<SOS>/<GO>: This is the input to the first time step of the decoder to let the decoder know when to

start generating output.

Special characters

may vary in name ...

12

Dataset Batch Preparation

1. Sample batch_size pairs of

(source_sequence, target_sequence).

2. Append <EOS> to the source_sequence

3. Prepend <SOS> to the target_sequence

to obtain the target_input_sequence and

append <EOS> to obtain target_output_sequence.

4. Pad up to the max_input_length (max_target_length)

within the batch using the <PAD> token.

5. Encode tokens based of vocabulary (or embedding)

6. Replace out of vocabulary (OOV) tokens with <UNK>.

Compute the length of each input and target sequence in the batch.

Vocabulary = {“<SOS>”: 00,
“<EOS>”: 99,
“<UNK>”: 01,
“<PAD>”: 03,
“the”: 42,
“is”: 16,
... }

13

Sequence to Sequence Modeling

Given <S, T> pairs, read S, and output T’ that matches T

14

Multiple Layers and Bidirectional LSTM Networks

Acomputation graph in time with continuous transformations.

X0

LS
TM

Y0

LS
TM

R
eL

u

X1

LS
TM

Y1

LS
TM

R
eL

u

…

…

…

…

…

Xt

LS
TM

Yt

LS
TM

R
eL

u

X0
Xt

LS
TM

Yt

LS
TM

R
eL

u

…

…

…

…

…

Xt-1
X1

LS
TM

Y1

LS
TM

R
eL

u

Xt
X0

LS
TM

Y0

LS
TM

R
eL

u

Hierarchical

representation

Bidirectional

processing

15

Extending Recurrent Neural Networks

Recurrent Neural Networks have been extended with memory to cope

with very long sequences and the encoding bottleneck …

input sequence output sequenceencoding

16

Extending Recurrent Neural Networks

Recurrent Neural Networks have been extended with memory to cope

with very long sequences and the encoding bottleneck …

https://distill.pub/2016/augmented-rnns/

17

Neural Turing Machines

Neural Turing Machines combine a RNN with an external memory bank.

How do we make

write and read

differentiable?

18

Neural Turing Machines Idea

Neural Turing Machines challenge:

• We want to learn what to write/read but also where to write it

• Memory addresses are be fundamentally discrete

• Write/read differentiable w.r.t the location we read from or write to

Solution: Every step, read and write everywhere, just to different extents.

Attention

mechanism!

19

Neural Turing Machines Attention

Content-based attention: searches

memory and focus on places that

match what they’re looking for

Location-based attention: allows

relative movement in memory

enabling the NTM to loop.

20

Neural Turing Machines Extensions

NTM perform algorithms, previously beyond neural networks:

• Learn to store a long sequence in memory

• Learn to loop and repeat sequences back repeatedly

• Learn to mimic a lookup table

• Learn to sort numbers …

Some extension have been proposed to go beyond this:

• Neural GPU overcomes the NTM’s inability to add and multiply numbers

• Zaremba & Sutskever train NTMs using reinforcement learning instead of the

differentiable read/writes used by the original

• Neural Random Access Machines work based on pointers

• Others have explored differentiable data structures, like stacks and queues

But the most interesting thing (to me)

was the attention mechanism!

21

Attention Mechanism in Seq2Seq Models

Considering the sequential dataset:

The decoder role is to model the generative probability:

In “vanilla” seq2seq models, the decoder is

conditioned initializing the initial state with last

state of the encoder.

Works well for short and medium-length

sentences; however, for long sentences, becomes a bottleneck

Attention on the past

hidded states used as

dynamic memory

22

Attention Mechanism in Seq2Seq Models

Let’s use the same idea of Neural Turing

Machines to get a differentiable attention

and learn where to focus attention.

Attention distribution is usually generated with

content-based attention.

Each item is thus weighted with the query

response to produce a score

Scores are fed into a softmax to create the

attention distribution

23

Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where

the weight assigned to each value is computed by a

compatibility function:

1. Compare current target hidden state ℎ𝑡,
with source states ℎ𝑠 to derive attention

1

24

Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where

the weight assigned to each value is computed by a

compatibility function:

2. Apply the softmax function on the attention

scores and compute the attention weights,

one for each encoder token

1

2

25

Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where

the weight assigned to each value is computed by a

compatibility function:

3. Compute the context vector as the weighted

average of the source states

1

2

3

26

Attention Mechanism in Seq2Seq Models

Attention function maps query and set of key-value pairs to an output.

Output computed as a weighted sum of the values, where

the weight assigned to each value is computed by a

compatibility function:

4. Combine the context vector with current

target hidden state to yield the final

attention vector

1

2

3

4

27

Attention Visualization

Alignment matrix is use to visualize attention

weights between source and target sentences.

For each decoding step, i.e., each generated

target token, describes which are the source

tokens that are more present in the weighted

sum that conditioned the decoding.

We can see attention as a tool in the

network’s bag that, while decoding, allows

it to pay attention on different parts of the source sentence.

28

Attention Visualization

29

Attention Mechanism in Translation

Attention allows processing the input to pass along information about

each word it sees, and then for generating the output to focus on words

as they become relevant.

Check the demo!!!

30

Attention Mechanism in Voice Recognition

Attention allows one RNN to process the audio and then have another

RNN skim over it, focusing on relevant parts as it generates a transcript.

Check the

demo!!!

31

Attention Mechanism in Image Captioning

A CNN processes the image, extracting high-level features. Then an RNN

runs, generating a description of the image based on the features.

As it generates each word in the description, the RNN focuses on the

CNN interpretation of the relevant parts of the image.

32

Attention in Response Generation (i.e., Chatbots)

Sources: https://blog.appliedai.com/chatbot-benefits/
https://blog.growthbot.org/chatbots-were-the-next-big-thing-what-happened

33

Attention in Response Generation (i.e., Chatbots)

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Generative: encode the question into a context

vector and generate the answer word by word using

conditioned probability distribution over answer’s

vocabulary. E.g., an encoder-decoder model.

• Retrieval: rely on knowledge base of question-answer

pairs. When a new question comes in, inference

phase encodes it in a context vector and by using

similarity measure retrieves the top-k neighbor

knowledge base items.

34

Attention in Response Generation (i.e., Chatbots)

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Single-turn: build the input vector by considering

the incoming question. They may lose important

information about the history of the conversation

and generate irrelevant responses.

• Multi-turn: the input vector is built by considering

a multi-turn conversational context, containing also

incoming question.

35

Generative Chatbots

Vinyals and Le, 2015 and Shang et al., 2015 proposed to directly apply

sequence to sequence models to the conversation between two agents:

• The first person utters “ABC”

• The second person replies “WXYZ”

Generative chatbots use an RNN and train it to map “ABC” to “WXYZ”:

• We can borrow the model from machine translation

• A flat model simple and general

• Attention mechanisms apply as usual

How do we handle

multi turns chat?

36

Generative Hierarchical Chatbots

The idea could be concatenating multiple turns into a single long input

sequence, but this probably results in poor performances.

• LSTM cells often fail to catch the long term dependencies within input

sequences that are longer than 100 tokens

• No explicit representation of turns can be exploited by the attention

mechanism

Xing et al., in 2017, extended attention mechanism from single-turn

response generation to a hierarchical attention mechanism

• Hierarchical attention networks (e.g., characters -> words -> sentences)

• Generate hidden representation of a sequence from contextualized words

37

Hierarchical Generative Multi-turn Chatbots

GRU

inference !

38

Hierarchical Generative Multi-turn Chatbots

39

Hierarchical Generative Multi-turn Chatbots

We can visualize hierarchical attention weights, darker color means more

important words or utterances.

40

Hierarchical Document Classification

Hierarchical attention networks have been used for topic classification

(e.g., Yahoo Answer data set).

• Left document denotes Science and Mathematics; model accurately localizes

the words zebra, stripes, camouflage, predator and corresponding sentences.

• Right document denotes Computers and Internet; the model focuses on web,

searches, browsers and their corresponding sentences.

41

Hierarchical Document Classification

In Sentiment Analysis, the model can select words carrying strong

sentiment like delicious, amazing, terrible and corresponding sentences.

Sentences containing useless words like cocktails, pasta, entree are

disregarded.

42

Attention is all you need!

NIPS 2017

43

Attention is all you need!

Having seen attention is what makes things working you start wondering:

• Sequential nature precludes parallelization within training examples, which

becomes critical at longer sequence lengths, as memory constraints limit

batching across examples.

• Attention mechanisms have become an integral part of compelling sequence

modeling and transduction models in various tasks. Can we base solely on

attention mechanisms, dispensing with recurrence and convolutions entirely?

• Without recurrence, nor convolution, in order for the model to make use of

the order of the sequence, we must inject some information about the relative

or absolute position of the tokens in the sequence.

44

Current State of the Art

There has been a running joke in the NLP community that an LSTM with

attention will yield state-of-the-art performance on any task.

Attention is built upon RNN …

Example: Neural Machine Translation
Attention

45

Current State of the Art

There has been a running joke in the NLP community that an LSTM with

attention will yield state-of-the-art performance on any task.

Attention is built upon RNN …

Example: Neural Machine Translation
AttentionThe Transformer breaks

this assumption!

46

Transformer

A Transformer model is make out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

47

Transformer

A Transformer model is make out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

48

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

49

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

50

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

51

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

52

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

53

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

54

Transformer

A Transformer model is made out of:

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position-wise Feed-Forward Networks

• Embeddings and Softmax

• Positional Encoding

Two types:
• learned positional embeddings (arXiv:1705.03122v2)
• Sinusoid:

Reason: no RNN to model the sequence position

55

Transformer Complexity

Observations:
• Self-Attention has O(1) maximum path length

(capture long range dependency easily)

• When n<d, Self-Attention has lower
complexity per layer

56

Transformer Performance

• Eng-to-De: new state-of-the-art

• Eng-to-Fr: new single-model state-of-the-art

• Less training cost

57

Transformer Performance

• source: Aber ich habe es nicht hingekriegt

• expected: But I didn't handle it

• got: But I didn't <UNK> it

• source: Wir könnten zum Mars fliegen wenn wir wollen

• expected: We could go to Mars if we want

• got: We could fly to Mars when we want

• source: Dies ist nicht meine Meinung Das sind Fakten

• expected: This is not my opinion These are the facts

• got: This is not my opinion These are facts

58

Acknowledgements

These slides are highly based on material taken from the following

websites/blogs:

• https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

• https://medium.com/@Aj.Cheng/seq2seq-18a0730d1d77

• https://distill.pub/2016/augmented-rnns/

• http://jalammar.github.io/illustrated-transformer/

Amazing images, and part of content, about attention mechanisms from

Olah & Carter, "Attention and Augmented Recurrent Neural Networks",

Distill, 2016. http://doi.org/10.23915/distill.00001

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://medium.com/@Aj.Cheng/seq2seq-18a0730d1d77
https://distill.pub/2016/augmented-rnns/
http://jalammar.github.io/illustrated-transformer/

