
- Attention Mechanism and Transformers -

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

Credits for images and examples to Elena Voita’s

https://lena-voita.github.io/nlp_course.html

https://lena-voita.github.io/nlp_course.html

2

You Need Attention!

Fixed source representation in basic sequence-to-sequence models may

become a representation bottleneck as it gets suboptimal for both

• Encoder: it may be hard to compress the full sentence;

• Decoder: different information may be relevant at different steps.

Attention let the model focus on different parts of the input
Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/1409.0473.pdf

3

You Need Attention!

Decoder uses attention to decide which source parts are more important

4

You Need Attention!

Decoder uses attention to decide which source parts are more important

1

1

2

2

3

3

4

4

Attention scores can be

computed in different ways
Fully differentiable,

thus trainable!

5

Attention Scores

Different mechanisms to compute attention scores have been proposed:

• Simple dot-product

• Bilinear function (aka "Luong attention")

• Multi-layer perceptron (aka "Bahdanau attention“)

6

Bahdanau Attention Model

Proposed as part of the original Bahdanau model

Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/1409.0473.pdf

7

Luong Attention Model

Proposed as part of the original Luong model

Effective Approaches to Attention-based Neural Machine Translation https://arxiv.org/abs/1508.04025

https://arxiv.org/abs/1508.04025

8

Attention learns soft sentence alignment …

Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/1409.0473.pdf

9

Generative Chatbots

We can directly apply sequence to sequence models to the conversation

between two agents:

• First person utters “ABC”

• Second person replies “WXYZ”

Generative chatbots use an RNN and train it to map “ABC” to “WXYZ”:

• We can borrow the model from machine translation

• A flat model simple and general

• Attention mechanisms apply as usual

A Neural Conversational Model https://arxiv.org/pdf/1506.05869.pdf

https://arxiv.org/pdf/1506.05869.pdf

10

Chatbots Response Generation

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Generative: encode the question into a context

vector and generate the answer word by word using

conditioned probability distribution over answer’s

vocabulary. E.g., an encoder-decoder model.

• Retrieval: rely on knowledge base of question-answer

pairs. When a new question comes in, inference

phase encodes it in a context vector and by using

similarity measure retrieves the top-k neighbor

knowledge base items.

We focus on

these here!

11

Chatbots Response Generation

Chatbots can be defined along at least two dimensions,

core algorithm and context handling:

• Single-turn: build the input vector by considering

the incoming question. They may lose important

information about the history of the conversation

and generate irrelevant responses.

• Multi-turn: the input vector is built by considering

a multi-turn conversational context, containing also

incoming question.

12

Generative Chatbots

We can directly apply sequence to sequence models to the conversation

between two agents:

• First person utters “ABC”

• Second person replies “WXYZ”

Generative chatbots use an RNN and train it to map “ABC” to “WXYZ”:

• We can borrow the model from machine translation

• A flat model simple and general

• Attention mechanisms apply as usual
How do we handle

multi turns chat?

A Neural Conversational Model https://arxiv.org/pdf/1506.05869.pdf

https://arxiv.org/pdf/1506.05869.pdf

13

Generative Hierarchical Chatbots

We could concatenate multiple turns into a single long input sequence,

however, this probably results in poor performances.

• LSTM cells often fail to catch longterm dependencies within input sequences

that are longer than 100 tokens

• No explicit representation of turns can be exploited by attention mechanism

Xing et al., in 2017, extended attention mechanism from single-turn

response generation to a hierarchical attention mechanism

• Hierarchical attention networks (e.g., characters -> words -> sentences)

• Generate hidden representation of a sequence from contextualized words

Hierarchical Recurrent Attention Network for Response Generation https://arxiv.org/pdf/1701.07149.pdf

https://arxiv.org/pdf/1701.07149.pdf

18

Beyond Recurrent Neural Networks

NLP community believed LSTMs with attention could yield state-of-art

performance on any task. But some limits were preventing this …

Because of using LSTMs (and any Recurrent Neural Network):

• Performing inference (and training) is sequential in nature

• Parallelization at sample level is precluded by recurrence sequential nature

• Parallelization can happen at level of batch only

• Memory constraints limit batching across to many examples

• This becomes critical at longer sequence lengths …

Here it comes another bottleneck in sequence-to-sequence modeling!

19

NIPS 2017

20

Attention is all you need!

Google proposes to speed up training by

replacing RNN (sequential in nature) with

attention mechanism (parallel in nature)

At each level we look at the entire sequence

Transformer: A Novel Neural Network Architecture for Language Understanding https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

This happens within

prefix tokens …

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

21

Attention is all you need!

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

1

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

22

The Self-Attention Idea

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Self-attention operates between representations of the same nature,

e.g., all encoder states in some layer.

This is implemented via:

• Query - asking for information;

• Key - saying that it has some information;

• Value - giving the information

The use of Query, Key and Value allows

parallel execution and thus parallel training!

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

23

Query, Key, Value …

24

Recall Luong Attention Model

Effective Approaches to Attention-based Neural Machine Translation https://arxiv.org/abs/1508.04025

https://arxiv.org/abs/1508.04025

25

Recall Luong Attention Model

Effective Approaches to Attention-based Neural Machine Translation https://arxiv.org/abs/1508.04025

https://arxiv.org/abs/1508.04025

26

Let’s Play Some Linear Algebra!

𝑥1
𝑥2

𝑊𝑄

𝑞1
𝑞2

X =

𝑥1
𝑥2

𝑊𝐾

𝑘1
𝑘2

X =

𝑥1
𝑥2

𝑊𝑉

𝑣1
𝑣2

X =

The Illustrated Transformer http://jalammar.github.io/illustrated-transformer/

𝑥1

Thinking

𝑥2

MachinesInput

Embeddings

𝑞1

𝑘1

𝑞2

𝑘2

Queries

Keys

𝑣1 𝑣2Values

Scores 𝑞1 ⋅ 𝑘1 = 112 𝑞1 ⋅ 𝑘2 = 96

Normalize 112/√64 = 14 96/√64 = 12

Softmax 0.88 0.12

Sum 𝑧1

http://jalammar.github.io/illustrated-transformer/

27

Let’s Play Some Linear Algebra!

The Illustrated Transformer http://jalammar.github.io/illustrated-transformer/

𝑥1

Thinking

𝑞1

𝑘1

𝑣1

𝑥2

Machines

𝑞2

𝑘2

𝑣2

Input

Embeddings

Queries

Keys

Values

Sum

Scores 𝑞2 ⋅ 𝑘1 = 32 𝑞2 ⋅ 𝑘2 = 64

Normalize 32/√64 = 4 64/√64 = 8

Softmax 0.02 0.98

𝑧1 𝑧2

𝑥1
𝑥2

𝑊𝑄

𝑞1
𝑞2

X =

𝑥1
𝑥2

𝑊𝐾

𝑘1
𝑘2

X =

𝑥1
𝑥2

𝑊𝑉

𝑣1
𝑣2

X =

http://jalammar.github.io/illustrated-transformer/

28

Let’s Play Some Linear Algebra!

The Illustrated Transformer http://jalammar.github.io/illustrated-transformer/

𝑥1
𝑥2

𝑊𝑄

𝑞1
𝑞2

X =

𝑥1
𝑥2

𝑊𝐾

𝑘1
𝑘2

X =

𝑥1
𝑥2

𝑊𝑉

𝑣1
𝑣2

X =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
 ×

𝑑𝑚𝑜𝑑𝑒𝑙

× =

http://jalammar.github.io/illustrated-transformer/

29

Multi-Head Attention

Attention defines the role of a word in a sentence. This, in turn, might be

related to different aspects such as:

• verb inflection wrt subject in terms of gender

• verb inflection wrt subjects in terms of number

• case of objects defines by verbs

• ...

Multiple head attentions allow the model to

focus on different things, both at encoding

and decoding time.
Check Mark Carman

lecture for this!

30

Multi-Head Attention

Attention defines the role of a word in a sentence. This, in turn, might be

related to different aspects such as:

• verb inflection wrt subject in terms of gender

• verb inflection wrt subjects in terms of number

• case of objects defines by verbs

Implemented as concatenation of several attention heads:

this way, models with one or several attention heads have the same size

(i.e., model size does not increase with number of heads)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝑛 𝑊𝑜

ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝑉𝑊𝑉

𝑖 , 𝑉𝑊𝑉
𝑖)

31

Let’s Play Some Linear Algebra!

𝑥1
𝑥2

X =

𝑊𝑄
1

𝑊𝐾
1

𝑊𝑉
1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
 ×

𝑑𝑚𝑜𝑑𝑒𝑙

× =
𝑧1

1

𝑧2
1

𝑥1
𝑥2

X =

𝑊𝑄
2

𝑊𝐾
2

𝑊𝑉
2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
 ×

𝑑𝑚𝑜𝑑𝑒𝑙

× =
𝑧1

2

𝑧2
2

𝑥1
𝑥2

X =

𝑊𝑄
3

𝑊𝐾
3

𝑊𝑉
3

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
 ×

𝑑𝑚𝑜𝑑𝑒𝑙

× =
𝑧1

3

𝑧2
3

. . .

32

Let’s Play Some Linear Algebra!

=
𝑧1

1

𝑧2
1

=
𝑧1

2

𝑧2
2

=
𝑧1

3

𝑧2
3

. . .

X

𝑊𝑂

=
𝑧1

𝑧2

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝑛 𝑊𝑜

ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝑉𝑊𝑉

𝑖 , 𝑉𝑊𝑉
𝑖)

33

Attention is all you need!

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

1 2

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

34

Masked Self-Attention

In the decoder, attention mechanism works differently at training and

inference time as we should not “look ahead”:

• At inference time, we generate one token

at the time as we do not know the length

of the sequence (no “look-ahead” problem)

• At training time, we know already the entire

output sequence and we want to process it

in parallel (“look ahead” problem)

This is obtained by

masking «future tokens»

at training time

35

Masked Self-Attention

In the decoder, attention mechanism works differently at training and

inference time as we should not “look ahead”:

• At inference time, we generate one token

at the time as we do not know the length

of the sequence (no “look-ahead” problem)

• At training time, we know already the entire

output sequence and we want to process it

in parallel (“look ahead” problem)

This is obtained by

masking «future tokens»

at training time

36

Masked Self-Attention

In the decoder, attention mechanism works differently at training and

inference time as we should not “look ahead”:

• At inference time, we generate one token

at the time as we do not know the length

of the sequence (no “look-ahead” problem)

• At training time, we know already the entire

output sequence and we want to process it

in parallel (“look ahead” problem)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

 ×

+

𝑑𝑚𝑜𝑑𝑒𝑙

× =

𝑀𝑎𝑠𝑘 = =
0 − inf
0 0

This is obtained by

masking «future tokens»

at training time

37

Masked Self-Attention

In the decoder, attention mechanism works differently at training and

inference time as we should not “look ahead”:

• At inference time, we generate one token

at the time as we do not know the length

of the sequence (no “look-ahead” problem)

• At training time, we know already the entire

output sequence and we want to process it

in parallel (“look ahead” problem)

RNN training is O(len(source) + len(target))

Transformer training is O(1) (with respect to [fixed] sequences’ length)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

 ×

+

𝑑𝑚𝑜𝑑𝑒𝑙

× =

𝑀𝑎𝑠𝑘 = =
0 − inf
0 0

38

Attention is all you need!

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

1 2

4
3

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

39

More Transformers’ Components …

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

40

Feed forward blocks with two linear layers & ReLU activations

Layer normalization

• Normalizes each single vector

representation of examples

in a batch independently

• Applies scale and bias globally,

which are trainable layer level

parameters

Residual connections …

More Transformers’ Components …

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊1
+ 𝑏1 𝑊2 + 𝑏2

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

41

Attention is all you need!

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

1 2

4
3

5

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

42

Self-Attention Permutation Invariance

The Self-Attention mechanism is permutation invariant by nature as it

does not depend on the position nor the order of words in the sequence

If you change the order of words,

this has no impact on the attention

values, but just on their order

Positional encoding is used to make

self-attention depend also on the

position of the input

43

Positional Encoding

A token input representation is the sum of two embeddings:

• for tokens (as we always do)

• for positions (needed for this model)

Positional embeddings can be learned, but

Transformer uses fixed positional encodings:

where pos is position, i is the vector dimension, and dmodel the input size.

Authors have tried learned encodings but did not improve …

𝑃𝐸 𝑝𝑜𝑠,2𝑖 = sin 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸 𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

44

Positional Encoding

A token input representation is the sum of two embeddings:

• for tokens (as we always do)

• for positions (needed for this model)

Positional embeddings can be learned, but

Transformer uses fixed positional encodings:

where pos is position, i is the vector dimension, and dmodel the input size.

Authors have tried learned encodings but did not improve …

𝑃𝐸 𝑝𝑜𝑠,2𝑖 = sin 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸 𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Long debate between me and

Carman about this being a

smart choice …

… not to talk about this!

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

45

Intuition Behind Transformer Position Encoding

Consider at the binary representation of a position, i.e., a number

Let’s 𝑝𝑜𝑠 be the position in an input sequence and 𝑃𝐸𝑝𝑜𝑠 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 its

encoding. The encoding function 𝑓 𝑝𝑜𝑠 : ℕ → ℝ𝑑𝑚𝑜𝑑𝑒𝑙 is defined as

 Transformer Architecture: The Positional Encoding https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

𝑃𝐸𝑝𝑜𝑠
(𝑖)

= 𝑓 𝑝𝑜𝑠 (𝑖) = ቊ
sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 , 𝑖 = 2𝑘

cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 , 𝑖 = 2𝑘 + 1
𝜔𝑘 =

1

100002𝑘/𝑑𝑚𝑜𝑑𝑒𝑙

• The LBS is alternating on every number

• The second-lowest bit is rotating on every two

• Frequency halves the next position, and so on.

Binary digits are a waste in

the land of float …

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

46

Visualizing Transformer Position Encoding

Positional encoding visualization https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

“We chose this function because we hypothesized it
would allow the model to easily learn to attend by
relative positions, since for any fixed offset PEpos+k
can be represented as a linear function of PEpos.”

Sinusoidals work as

alternating bits

This why Carman believes it is

a smart move, but is it true?

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

47

Position Encoding and Relative Positioning

For every sine-cosine pair for frequency 𝜔𝑘 find a linear transformation

𝑀 ∈ ℝ2×2, independent of 𝑝𝑜𝑠, where the following equation holds

Let 𝑀 ∈ ℝ2×2 we want to find 𝑢1, 𝑣1, 𝑢2, 𝑣2 so that

By the addition theorem

Linear Relationships in the Transformer’s Positional Encoding https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

𝑀
sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠

cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠
=

sin 𝜔𝑘 ⋅ (𝑝𝑜𝑠 + 𝑘

cos 𝜔𝑘 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝑢1 𝑣1

𝑢2 𝑣2

sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠

cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠
=

sin 𝜔𝑘 ⋅ (𝑝𝑜𝑠 + 𝑘

cos 𝜔𝑘 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝑢1 𝑣1

𝑢2 𝑣2

sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠

cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠
=

sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 + cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 − 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

48

Position Encoding and Relative Positioning

From the previous we derive the following two equations

by solving these equations, we get the following

The transformation matrix is thus independent from 𝑝𝑜𝑠 (it is a rotation)

Linear Relationships in the Transformer’s Positional Encoding https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

𝑢1 sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 + 𝑣1 cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 = sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 + cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑢2 sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 + 𝑣2 cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 = cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 − 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑀 =
cos 𝜔𝑘 ⋅ 𝑘 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

−𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘 𝑐𝑜𝑠 𝜔𝑘 ⋅ 𝑘

𝑢1 = cos 𝜔𝑘 ⋅ 𝑘 𝑣1 = 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑢2 = −𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘 𝑣2 = 𝑐𝑜𝑠 𝜔𝑘 ⋅ 𝑘

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

49

Position Encoding and Relative Positioning

From the previous we derive the following two equations

by solving these equations, we get the following

The transformation matrix is thus independent from 𝑝𝑜𝑠 (it is a rotation)

Neighboring time-steps distance are symmetrical and decay smoothly!

Linear Relationships in the Transformer’s Positional Encoding https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

𝑢1 sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 + 𝑣1 cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 = sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 + cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑢2 sin 𝜔𝑘 ⋅ 𝑝𝑜𝑠 + 𝑣2 cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 = cos 𝜔𝑘 ⋅ 𝑝𝑜𝑠 cos 𝜔𝑘 ⋅ 𝑘 − 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑝𝑜𝑠 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑀 =
cos 𝜔𝑘 ⋅ 𝑘 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

−𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘 𝑐𝑜𝑠 𝜔𝑘 ⋅ 𝑘

𝑢1 = cos 𝜔𝑘 ⋅ 𝑘 𝑣1 = 𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘

𝑢2 = −𝑠𝑖𝑛 𝜔𝑘 ⋅ 𝑘 𝑣2 = 𝑐𝑜𝑠 𝜔𝑘 ⋅ 𝑘

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

50

Learning Positional Embeddings

Nevertheless, state of the art Transformers (BERT, RoBERTa, GPT-2, …)

learn the positional encoding instead of using a fixed one

Moreover, some of them use summation, others use concatenation …

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding https://arxiv.org/abs/2010.04903

This why I believe it is not

such a smart move! ;-)

https://arxiv.org/abs/2010.04903

51

Summation vs Concatenation

Why should I sum the

position encoding?

What else would

you do?

Concaternate?

Such a waste of

paramenters!

Adding vs. concatenating positional embeddings & Learned positional encodings https://youtu.be/M2ToEXF6Olw

https://youtu.be/M2ToEXF6Olw

52

Attention is all you need!

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

1 2

4
3

5

6

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

53

Transformer Complexity

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

54

Transformer Complexity

• Self-Attention has O(1) maximum path length

(capture long range dependency easily)

• When n<d, Self-Attention has lower complexity

than a recurrent layer

• We can always restrict attention to a neighborhood of size r

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

55

Transformer Performance

• EN-to-DE: new state-of-the-art

• EN-to-FR: new single-model state-of-the-art

Attention Is All You Need https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

What did it learned?

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

56

Transformer Heads are Interpretable

By looking at how much, on average, different heads "contribute" to

generated translations it turns out only a small number are important

and the play interpretable "roles“:

• Positional: attend to a token's immediate neighbors, and the model has several

such heads (usually 2-3 looking at the previous and 2 looking at the next ones)

• Syntactic: learned to track some major syntactic relations in the sentence

(subject-verb, verb-object, etc.)

• Rare tokens: the most important head on the first layer attends to the least

frequent tokens in a sentence (this is true for models trained on different

language pairs!)

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned https://lena-voita.github.io/posts/acl19_heads.html

Remaining ones can

be pruned

https://lena-voita.github.io/posts/acl19_heads.html

57

Model Trained on OpenSubtitles EN-RUModel Trained on WMT EN-RU

Model Trained on WMT EN-FRModel Trained on WMT EN-DE

Positional Heads

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned https://lena-voita.github.io/posts/acl19_heads.html

https://lena-voita.github.io/posts/acl19_heads.html

58

Verb -> Object Object -> Verb Verb -> Subject Object -> Verb

Subject->Verb Verb->SubjectSubject->Verb Verb->Subject

Syntactic Heads

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned https://lena-voita.github.io/posts/acl19_heads.html

https://lena-voita.github.io/posts/acl19_heads.html

59

Model Trained on WMT EN-FR

Model Trained on OpenSubtitles EN-RUModel Trained on WMT EN-RU

Model Trained on WMT EN-DE

Rare Tokens Heads

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned https://lena-voita.github.io/posts/acl19_heads.html

https://lena-voita.github.io/posts/acl19_heads.html

60

Are there any limits for Transformers?

AI and Memory Wall https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

61

Are there any limits for Transformers?

AI and Memory Wall https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

62

Amazing images and content taken from Elena Voita’s NLP Course

Step by step implementation of Transformers

• Text classification with Transformer

https://keras.io/examples/nlp/text_classification_with_transformer/

• English-to-Spanish translation with a sequence-to-sequence Transformer

https://keras.io/examples/nlp/neural_machine_translation_with_transformer/

• Neural machine translation with a Transformer and Keras

https://www.tensorflow.org/text/tutorials/transformer?hl=en

• The Annotated Transformer http://nlp.seas.harvard.edu/annotated-transformer/

Acknowledgements

https://lena-voita.github.io/nlp_course.html

https://keras.io/examples/nlp/text_classification_with_transformer/
https://keras.io/examples/nlp/neural_machine_translation_with_transformer/
https://www.tensorflow.org/text/tutorials/transformer?hl=en
http://nlp.seas.harvard.edu/annotated-transformer/
https://lena-voita.github.io/nlp_course.html

63

Acknowledgements

Slides material taken from following blogs/papers (order of appearance):
• The Unreasonable Effectiveness of Recurrent Neural Networks:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Sequence to sequence learning with Neural networks: https://arxiv.org/pdf/1409.3215.pdf

• Neural Machine Translation by Jointly Learning to Align and Translate:

https://arxiv.org/pdf/1409.0473.pdf

• Effective Approaches to Attention-based Neural Machine Translation

https://arxiv.org/abs/1508.04025

• A Neural Conversational Model https://arxiv.org/pdf/1506.05869.pdf

• Hierarchical Recurrent Attention Network for Response Generation

https://arxiv.org/pdf/1701.07149.pdf

• Transformer: A Novel Neural Network Architecture for Language Understanding

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

• Attention Is All You Need https://arxiv.org/abs/1706.03762

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1506.05869.pdf
https://arxiv.org/pdf/1701.07149.pdf
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://arxiv.org/abs/1706.03762

64

Acknowledgements

Slides material taken from following blogs/papers (continued):
• The Illustrated Transformer http://jalammar.github.io/illustrated-transformer/

• Transformer Architecture: The Positional Encoding

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

• Positional encoding visualization

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

• Linear Relationships in the Transformer’s Positional Encoding https://timodenk.com/blog/linear-

relationships-in-the-transformers-positional-encoding/

• What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model

Positional Encoding https://arxiv.org/abs/2010.04903

• Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be

Pruned https://lena-voita.github.io/posts/acl19_heads.html

• AI and Memory Wall https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

http://jalammar.github.io/illustrated-transformer/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
https://arxiv.org/abs/2010.04903
https://lena-voita.github.io/posts/acl19_heads.html
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

	Slide 1: - Attention Mechanism and Transformers - Matteo Matteucci, PhD (matteo.matteucci@polimi.it) Artificial Intelligence and Robotics Laboratory Politecnico di Milano
	Slide 2: You Need Attention!
	Slide 3: You Need Attention!
	Slide 4: You Need Attention!
	Slide 5: Attention Scores
	Slide 6: Bahdanau Attention Model
	Slide 7: Luong Attention Model
	Slide 8: Attention learns soft sentence alignment …
	Slide 9: Generative Chatbots
	Slide 10: Chatbots Response Generation
	Slide 11: Chatbots Response Generation
	Slide 12: Generative Chatbots
	Slide 13: Generative Hierarchical Chatbots
	Slide 18: Beyond Recurrent Neural Networks
	Slide 19
	Slide 20: Attention is all you need!
	Slide 21: Attention is all you need!
	Slide 22: The Self-Attention Idea
	Slide 23: Query, Key, Value …
	Slide 24: Recall Luong Attention Model
	Slide 25: Recall Luong Attention Model
	Slide 26: Let’s Play Some Linear Algebra!
	Slide 27: Let’s Play Some Linear Algebra!
	Slide 28: Let’s Play Some Linear Algebra!
	Slide 29: Multi-Head Attention
	Slide 30: Multi-Head Attention
	Slide 31: Let’s Play Some Linear Algebra!
	Slide 32: Let’s Play Some Linear Algebra!
	Slide 33: Attention is all you need!
	Slide 34: Masked Self-Attention
	Slide 35: Masked Self-Attention
	Slide 36: Masked Self-Attention
	Slide 37: Masked Self-Attention
	Slide 38: Attention is all you need!
	Slide 39: More Transformers’ Components …
	Slide 40: More Transformers’ Components …
	Slide 41: Attention is all you need!
	Slide 42: Self-Attention Permutation Invariance
	Slide 43: Positional Encoding
	Slide 44: Positional Encoding
	Slide 45: Intuition Behind Transformer Position Encoding
	Slide 46: Visualizing Transformer Position Encoding
	Slide 47: Position Encoding and Relative Positioning
	Slide 48: Position Encoding and Relative Positioning
	Slide 49: Position Encoding and Relative Positioning
	Slide 50: Learning Positional Embeddings
	Slide 51: Summation vs Concatenation
	Slide 52: Attention is all you need!
	Slide 53: Transformer Complexity
	Slide 54: Transformer Complexity
	Slide 55: Transformer Performance
	Slide 56: Transformer Heads are Interpretable
	Slide 57: Positional Heads
	Slide 58: Syntactic Heads
	Slide 59: Rare Tokens Heads
	Slide 60: Are there any limits for Transformers?
	Slide 61: Are there any limits for Transformers?
	Slide 62: Acknowledgements
	Slide 63: Acknowledgements
	Slide 64: Acknowledgements

