
Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 1 of 27

Reinforcement Learning II

Andrea Bonarini

Artificial Intelligence and Robotics Lab
Department of Electronics and Information

Politecnico di Milano

E-mail: bonarini@elet.polimi.it
URL:http://www.dei.polimi.it/people/bonarini

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 2 of 27

Learning from interaction
R. S. Sutton, A. G. Barto, 1998, Reinforcement learning: An introduction
(available on line)

Reinforcement learning is learning from interaction with an environment to
achieve a goal, despite the uncertainty about the environment.

Agent’s actions affect the environment, and so its options and
opportunities, including the possibility to learn further.

A correct choice requires taking into account indirect, delayed
consequences of actions, which often cannot be predicted appropriately,
due to uncertainty and poor information about the environment.

The agent knows when it has reached its own goals.

The agent can use its experience to improve.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 3 of 27

The Reinforcement Learning Framework

The learner and decison-maker is called the agent

The thing it interacts with is called the environment

The agent performs actions to the environment and receives a (partial)
description of the situation, and a reward

AGENT

ENVIRONMEN
T

Action at
Reward rt

Situation st

LATCH rt+1

st+1

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 4 of 27

Interaction

The agent interacts with the environment at each of a series of time steps
(discrete time) t= 0, 1, 2,….
At each time step, the agent receives a description of the situation st∈ S, and
selects an action at∈ A(st) among those possible in situation st.

One time step later, in part possibly as consequence of its action, the agent
receives a reward rt+1 and finds itself in a new situation st+1.

At each time step the agent implements a mapping from situations to
probabilities of selecting each possible action. This mapping is called the
agent’s policy πt, where πt(s,a) is the probability that
at =a ∈ A(s) if st=s.

Reinforcement learning methods specify how the agent changes its policy as
a result of its experiences in interacting with its environment

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 5 of 27

Generic framework
Time steps do not need to be time intervals, but could be also discrete time
points where a decision is required, or a discretization of continuous time as
it always happen.

Actions can be low level control values for an engine, as well as “have a
lunch”, or “buy ENEL bonds”.

Situations can be sensor readings, their interpretations or even more abstract
descriptions.

AGENT

ENVIRONMENT

Reward rt

Situation st

LATCH rt+1

st+1
Interface

Interface

Action at

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 6 of 27

Interfaces and lost information

Every time we have interfaces we may lose
some information, since interfaces
translate some signal into something
possibly different from the expected
associated information .
E.g.:

a camera interfaces the world to the visual
interpretation system, and introduces errors and
approximation due to discretization in pixels, time
of acquisition, sensor quality, settings, …

A visual interpretation system may provide a
world description affected by errors and
approximation due to interpretation algorithms,
lack of infromation from sensors, discretization,
….

The difference between the situation description
received by the learner and the reality may
reduce the learning quality.

??

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 7 of 27

Goal and reward

The reward signal is the way to communicate to the agent what we want to
achieve, not how to achieve it. If we know “how” we don’t need any RL.

Reinforcement learning optimizes the reward received in the long run. It is a
designer’s responsibility to define reward signals really related to the goal,
and informative enough to drive learning.

Often, reward is computed directly from “sensors”: problems analogous to
those mentioned for situation perception may arise

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 8 of 27

Markovianity

Given the history of an agent

Ht={s0, a0, r1, s1, a1, r2, …, st-1, at-1, rt, st}

a situation is a state (i.e., it completely describes the system) iff

Pr{st+1= s, rt+1= r | st, at} = Pr{st+1= s, rt+1= r | Ht, at}

for all t≥0, s ∈ S, r ∈ R, a ∈ A(st), and all possible Ht .

In this case the environment is said to have the

Markov property

In other words: the state reached by performing an action at time t from a
given state, and the received reward, only depends on the action and the
state at time t, and not on any other element which coud be possibly
undefined

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 9 of 27

Markov Decision Process

When the environment has the Markov property, it and its interface define a
Markov Decision Process (MDP)

If an MDP has a finite number of states, and a finite number of actions are
available from each state, then it is a finite MDP.

For finite MDPs we can represent the dynamics of the system by:

• the state transition probabilities

Pa
ss’=Pr{st+1= s’ | st= s, at = a}

• the expected reward

Ra
ss’= E{rt+1| st= s, at = a, st+1= s’ }

If these are known we say that we have a reinforcement learning problem under

conditions of complete information

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 10 of 27

Does perfection exist?

Unfortunately, in real world we cannot work under conditions of complete
information for many reasons:

• sensors are not enough (nor good enough) to capture all the
information about the environment

• sensors translate signals to other signals, often introducing noise and
approximation

• …

For instance, let us consider a vision system that should learn to recognize a
target …

Anyway, RL algorithms work reasonably well also when we have incomplete
information, of course, to some extent…

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 11 of 27

State transition graphs

Useful tool to represent an MDP.

2 types of nodes:

• state nodes represent states

• action nodes represent actions

If we start from a state and take an action we follow the link to the
corresponding node. From there, the environment will bring us to the state
nodes connected with arrows to the action node, with the probabilities and
rewards marked on the arrows

sk

ai

wait

wait search

high low

search

recharge1,1

1, 1

1, 0.5

1, 0.5

0.7, 1

0.3, 1

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 12 of 27

Dynamic Programming

Dynamic programming methods can be used to estimate value functions and
action functions.

Dynamic programming methods are guaranteed to converge when complete
information is available, i.e., when we have a perfect model of the
environment. This is not true in most real world cases, but dynamic
programming techniques may obtain good results anyway.

The most important problem, apart the need for the model, is the required
computational effort, which is polynomial in the number of states and
actions. Anyway, this is better than exhaustive search which is exponential.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 13 of 27

Dynamic Programming: Policy Iteration I

1. Initialization
π ← an arbitrary policy

V ← an arbitrary function : S →ℜ
θ ← a small positive number

2. Policy evaluation
Repeat

Δ← 0

For each s ∈ S:
v← V(s)

V(s) ← Σs’Pa
ss’ [Ra

ss’ +γ V(s’)]
Δ← max (Δ, |v – V(s)|)

until Δ<θ

3. Policy improvement (cont.)

Probability to get in
state s’ from state s,

by taking action a

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 14 of 27

Dynamic Programming: Policy Iteration II

3. Policy improvement (cont’d)
policy-stable ← true

For each s ∈ S:
b← π (s)

π (s) ← argmaxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]
If b ≠ π (s) then policy-stable ← false
If policy-stable then stop else go to 2

Notice that, whenever a policy is changed, all the policy evaluation (step 2)
has to be performed again.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 15 of 27

Dynamic Programming: Value Iteration
1. Initialization

π ← an arbitrary policy

V ← an arbitrary function : S →ℜ (e.g., V(s)=0 for all s)

θ ← a small positive number

2. State evaluation
Repeat

Δ← 0

For each s ∈ S:
v← V(s)

V(s) ← maxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]
Δ← max (Δ, |v – V(s)|)

until Δ<θ

3. Output

Output a deterministic policy such that π (s) ← argmaxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 16 of 27

Bootstrapping

One of the key ideas of DP is that of looking ahead along a state transition
and using the current value estimates at the ending states to improve the
value estimate for the starting state.

Thus, estimates are built on the basis of other estimates. This is called the
bootstrapping property and will be used later also for other RL methods.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 17 of 27

Co-convergence

The second idea of DP is that there are two simultaneous, interacting
processes, one making the value function consistent with the current policy
(the policy evaluation step) and the other making the policy greedy with
respect to the current value function (the policy improvement step).

In policy iteration the two steps alternate, each completing before the other
begins.

In value iteration, only a single iteration of policy evaluation is performed
between each policy improvement step.

The result is the same, over many iterations.

The results are obtained from the simultanous convergence of the two
processes: co-convergence.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 18 of 27

Monte Carlo methods

Monte Carlo methods are used to estimate action-value functions when
incomplete model is available to
generate some experience-samples.

They are guaranteed to converge
as the number of visits to each
state goes to infinity.

The estimates for each state are
independent.

The computational burden to estimate the value of a single state is
independent of the number of the states: interesting methods when the
values of only a subset of the states are required.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 19 of 27

A Monte Carlo algorithm

1. Initialization
For each s ∈ S and a ∈ A(s):

Rewards (s, a)= empty list ; a list of all rewards for s,a
π(s) ← an arbitrary policy

Q(s,a) ← an arbitrary action-value function : S, A(s) →ℜ
2. Value improvement step

Generate a trial using π
For each pair s,a in the trial:

r ← the reward due to the first occurrence of s, a
append r to Rewards(s,a)
Q(s,a) = average (Rewards(s,a))

3. Policy improvement step
For each s in the trial:

π(s) = argmaxa Q(s,a)

Go to 2.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 20 of 27

Temporal Difference methods

Learning without a model (as MC methods), by updating estimates based in
part on other estimates (as DP).

Learning is driven by the temporal differences in prediction.

ΔVt(st) = α [rt+1+ γ Vt(st+1) - Vt(st)]

Vt(st+1) is taken as an estimate of the correct one
The target is here rt+1+ γ Vt(st+1)

Suitable in dynamic environments for online learning.

They have been proven to converge in the mean for any fixed policy π for
sufficiently small step size, and with probability 1 for step size decreasing in
time.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 21 of 27

SARSA: On-policy TD control

On-policy means that it evaluates and improves the same policy used to control.
SARSA uses past state and action, reward, and future state and action.

Algorithm:
Q ← an arbitrary action-value function :
For each trial:

Initialize s
Chose a from s using a policy based on Q
Repeat for each step in the trial:
Take action a, observe r and s’

Choose a’ from s’ using a policy based on Q
Q(s,a)← Q(s,a) + α [r + γ Q(s’,a’) – Q (s,a)]
s← s’
a← a’

until s is terminal

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 22 of 27

Q-learning: Off-policy TD control

Off-policy means that evaluates and improves a policy (estimation policy)
different from that used to control (behavior policy). This makes it possible,
e.g., to learn an optimal policy by experiencing another one, simpler to
define

Algorithm:

Q(s,a) ← an arbitrary action-value function : S, A(s) →ℜ
For each trial:

Initialize s

Repeat for each step in the trial:

Choose a from s using a policy based on Q

Take action a, observe r and s’

Q(s,a)← Q(s,a) + α [r + γ maxa’ Q(s’,a’) – Q (s,a)]

s← s’

until s is terminal

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 23 of 27

Eligibility traces

An eligibility trace is a temporary record of the occurrence of an event such
as a state visit or an action selection.

The trace marks the memory parameters associated with the event as
eligible for undergoing learning changes.

When reinforcement occurs, the eligible states or actions are assigned credit
for it.

It is a way to distribute reinforcement not only to the current state or action,
but also to those that brought the system in the current state.

Useful in case of sparse (delayed) reinforcement.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 24 of 27

What is an eligibility trace?

Let’s denote the trace for state s at time t as et(s) ∈ ℜ

On each step the traces for each state decay by γλ and the trace of the
visited state is incremented by 1:

where γ is the usual discount parameter and 0 ≤ λ ≤ 1

This is called an accumulating trace.

In many problems a replace trace may reduce the learning time:

() ()
()⎩

⎨
⎧

=+
≠

=
−

−

tt

tt
t ssse

ssse
se

 if1
 if

1

1

γλ
γλ

() ()
⎩
⎨
⎧

=
≠

= −

t

tt
t ss

ssse
se

 if1
 if1γλ

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 25 of 27

TD(λ)

The TD error used in the TD methods becomes here:

ΔVt(s) = α [rt+1+ γ Vt(st+1) - Vt(st)] et(s)

As we will see in the algorithm, values of ALL the states are updated using
the TD error (the term in square brackets), which varies from time to time,
but is the same for each state. Different states are assigned credit
proportionally to their eligibility.

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 26 of 27

TD(λ)

Initialize V(s) arbitrarily and e(s) = 0, for all s
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

a ← action selected for s using a policy π based on Q
Take action a, observe r and the next state s’
δ ← r + γ V(s’) – V (s)
e(s)← e(s) +1
For all s:

V(s) ← V(s)+α δ e(s)
e(s)← γλ e(s)

s← s’
until s is terminal

Introduction to Reinforcement Learning II © A. Bonarini (bonarini@elet.polimi.it) - 27 of 27

Q(λ)

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a

Repeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

Take action a, observe r,s’

Choose a’ from s’ , using a policy based on Q

a* ← argmaxb Q(s’,b) (if a’ ties for the max, then a* ← a’)

δ ← r + γ Q(s’,a*) – Q (s,a)

e(s,a)← e(s,a) +1

For all s,a:

Q(s,a) ← Q(s,a)+α δ e(s,a)

If a’ = a* then e(s,a)← γλ e(s,a) else e(s,a) ← 0

s← s’; a← a’

until s is terminal

	Reinforcement Learning II
	Learning from interaction
	The Reinforcement Learning Framework
	Interaction
	Generic framework
	Interfaces and lost information
	Goal and reward
	Markovianity
	Markov Decision Process
	Does perfection exist?
	State transition graphs
	Dynamic Programming
	Dynamic Programming: Policy Iteration I
	Dynamic Programming: Policy Iteration II
	Dynamic Programming: Value Iteration
	Bootstrapping
	Co-convergence
	Monte Carlo methods
	A Monte Carlo algorithm
	Temporal Difference methods
	SARSA: On-policy TD control
	Q-learning: Off-policy TD control
	Eligibility traces
	What is an eligibility trace?
	TD()
	TD()
	Q()

