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Learning from interaction
R. S. Sutton, A. G. Barto, 1998, Reinforcement learning: An introduction
(available on line)

Reinforcement learning is learning from interaction with an environment to 
achieve a goal, despite the uncertainty about the environment. 

Agent’s actions affect the environment, and so its options and 
opportunities, including the possibility to learn further.

A correct choice requires taking into account indirect, delayed 
consequences of actions, which often cannot be predicted appropriately, 
due to uncertainty and poor information about the environment.

The agent knows when it has reached its own goals.

The  agent can use its experience to improve.
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The Reinforcement Learning Framework

The learner and decison-maker is called the agent

The thing it interacts with is called the environment

The agent performs actions to the environment and receives a (partial) 
description of the situation, and a reward

AGENT

ENVIRONMEN
T

Action at
Reward rt

Situation st

LATCH rt+1

st+1
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Interaction

The agent interacts with the environment at each of a series of time steps 
(discrete time) t= 0, 1, 2,….
At each time step, the agent receives a description of the situation st∈ S, and 
selects an action at∈ A(st) among those possible in situation st. 

One time step later, in part possibly as consequence of its action, the agent 
receives a reward rt+1 and finds itself in a new situation st+1.

At each time step the agent implements a mapping from situations to 
probabilities of selecting each possible action. This mapping is called the 
agent’s policy πt, where πt(s,a) is the probability that 
at =a ∈ A(s) if st=s.

Reinforcement learning methods specify how the agent changes its policy as 
a result of its experiences in interacting with its environment
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Generic framework
Time steps do not need to be time intervals, but could be also discrete time 
points where a decision is required, or a discretization of continuous time as 
it always happen.

Actions can be low level control values for an engine, as well as “have a 
lunch”, or “buy ENEL bonds”. 

Situations can be sensor readings, their interpretations or even more abstract 
descriptions.

AGENT

ENVIRONMENT

Reward rt

Situation st

LATCH rt+1

st+1
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Interfaces and lost information

Every time we have interfaces we may lose 
some information, since interfaces 
translate some signal into something 
possibly different from the expected 
associated information .
E.g.: 

a camera interfaces the world to the visual 
interpretation system, and introduces errors and 
approximation due to discretization in pixels, time 
of acquisition, sensor quality, settings, …

A visual interpretation system may provide a 
world description affected by errors and 
approximation due to interpretation algorithms, 
lack of infromation from sensors, discretization, 
….

The difference between the situation description 
received by the learner and the reality may 
reduce the learning quality.

??
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Goal and reward

The reward signal is the way to communicate to the agent what we want to 
achieve, not how to achieve it. If we know “how” we don’t need any RL.

Reinforcement learning optimizes the reward received in the long run. It is a 
designer’s responsibility to define reward signals really related to the goal, 
and informative enough to drive learning.

Often, reward is computed directly from “sensors”: problems analogous to 
those mentioned for situation perception may arise
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Markovianity

Given the history of an agent

Ht={s0, a0, r1, s1, a1, r2, …, st-1, at-1, rt, st}

a situation is a state (i.e., it completely describes the system) iff

Pr{st+1= s, rt+1= r | st, at} = Pr{st+1= s, rt+1= r | Ht, at} 

for all t≥0, s ∈ S, r ∈ R, a ∈ A(st), and all possible Ht .

In this case the environment is said to have the 

Markov property

In other words: the state reached by performing an action at time t from a 
given state, and the received reward, only depends on the action and the 
state at time t, and not on any other element which coud be possibly 
undefined
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Markov Decision Process

When the environment has the Markov property, it and its interface define a 
Markov Decision Process (MDP)

If an MDP has a finite number of states, and a finite number of actions are 
available from each state, then it is a finite MDP.

For finite MDPs we can represent the dynamics of the system by: 

• the state transition probabilities 

Pa
ss’=Pr{st+1= s’ | st= s, at = a}

• the  expected reward

Ra
ss’= E{rt+1| st= s, at = a, st+1= s’ }

If these are known we say that we have a reinforcement learning problem under 

conditions of complete information
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Does perfection exist?

Unfortunately, in real world we cannot work under conditions of complete 
information for many reasons:

• sensors are not enough (nor good enough) to capture all the 
information about the environment

• sensors translate signals to other signals, often introducing noise and 
approximation

• …

For instance, let us consider a vision system that should learn to recognize a 
target …

Anyway, RL algorithms work reasonably well also when we have incomplete 
information, of course, to some extent…
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State transition graphs

Useful tool to represent an MDP.

2 types of nodes:

• state nodes represent states

• action nodes represent actions

If we start from a state and take an action we follow the link to the 
corresponding node. From there, the environment will bring us to the state 
nodes connected with arrows to the action node, with the probabilities and 
rewards marked on the arrows
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Dynamic Programming

Dynamic programming methods can be used to estimate value functions  and 
action functions.

Dynamic programming methods are guaranteed to converge when complete 
information is available, i.e., when we have a perfect model of the 
environment. This is not true in most real world cases, but dynamic 
programming techniques may obtain good results anyway.

The most important problem, apart the need for the model, is the required 
computational effort, which is polynomial in the number of states and 
actions. Anyway, this is better than exhaustive search which is exponential.
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Dynamic Programming: Policy Iteration I

1. Initialization 
π ← an arbitrary policy

V ← an arbitrary function : S →ℜ
θ ← a small positive number

2. Policy evaluation
Repeat

Δ← 0

For each s ∈ S:
v← V(s)

V(s) ← Σs’Pa
ss’ [Ra

ss’ +γ V(s’)]
Δ← max (Δ, |v – V(s)|)

until Δ<θ

3. Policy improvement (cont.)

Probability to get in 
state s’ from state s, 

by taking action a
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Dynamic Programming: Policy Iteration II

3. Policy improvement (cont’d)
policy-stable ← true

For each s ∈ S:
b← π (s)

π (s) ← argmaxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]
If b ≠ π (s) then policy-stable ← false
If policy-stable then stop else go to 2

Notice that, whenever a policy is changed, all the policy evaluation (step 2) 
has to be performed again.
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Dynamic Programming: Value Iteration
1. Initialization 

π ← an arbitrary policy

V ← an arbitrary function : S →ℜ (e.g., V(s)=0 for all s)

θ ← a small positive number

2. State evaluation
Repeat

Δ← 0

For each s ∈ S:
v← V(s)

V(s) ← maxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]
Δ← max (Δ, |v – V(s)|)

until Δ<θ

3. Output 

Output a deterministic policy such that π (s)  ← argmaxaΣs’Pa
ss’ [Ra

ss’ +γ V(s’)]
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Bootstrapping

One of the key ideas of DP is  that of looking ahead along a state transition 
and using the current value estimates at the ending states to improve the 
value estimate for the starting state. 

Thus, estimates are built on the basis of other estimates. This is called the 
bootstrapping property and will be used later also for other RL methods.
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Co-convergence

The second idea of DP is that there are two simultaneous, interacting 
processes, one making the value function consistent with the current policy 
(the policy evaluation step) and the other making the policy greedy  with 
respect to the current value function (the policy improvement step).

In policy iteration the two steps alternate, each completing before the other 
begins.

In value iteration, only a single iteration of policy evaluation is performed  
between each policy improvement step.

The result is the same, over many iterations.

The results are obtained from the simultanous convergence of the two 
processes: co-convergence.
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Monte Carlo methods

Monte Carlo methods are used to estimate action-value functions when 
incomplete model is available to
generate some experience-samples.

They are guaranteed to converge 
as the number of visits to each 
state goes to infinity. 

The estimates for each state are 
independent.

The computational burden to estimate the value of a single state is 
independent of the number of the states: interesting methods when the 
values of only a subset of the states are required.
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A Monte Carlo algorithm

1. Initialization 
For each s ∈ S and a ∈ A(s):

Rewards (s, a)= empty list    ; a list of all rewards for s,a
π(s) ← an arbitrary policy

Q(s,a) ← an arbitrary action-value function : S, A(s) →ℜ
2. Value improvement step

Generate a trial using π
For each pair s,a in the trial:

r ← the reward due to the first occurrence of s, a
append r to Rewards(s,a)
Q(s,a) = average (Rewards(s,a))

3. Policy improvement step
For each s in the trial:

π(s) = argmaxa Q(s,a) 

Go to 2.
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Temporal Difference methods

Learning without a model (as MC methods), by updating estimates based in 
part on other estimates (as DP).

Learning is driven by the temporal differences in prediction.

ΔVt(st) = α [rt+1+ γ Vt(st+1) - Vt(st)]

Vt(st+1) is taken as an estimate of the correct one
The target is here rt+1+ γ Vt(st+1)

Suitable in dynamic environments for online learning.

They have been proven to converge in the mean for any fixed policy π for 
sufficiently small step size, and with probability 1  for step size decreasing in 
time.
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SARSA: On-policy TD control

On-policy means that it evaluates and improves the same policy used to control.
SARSA uses past state and action, reward, and future state and action.

Algorithm:
Q ← an arbitrary action-value function : 
For each trial:

Initialize s
Chose a from s using a policy based on Q
Repeat for each step in the trial:
Take action a, observe r and s’

Choose a’ from s’ using a policy based on Q
Q(s,a)← Q(s,a) + α [r + γ Q(s’,a’) – Q (s,a)]
s← s’
a← a’

until s is terminal
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Q-learning: Off-policy TD control

Off-policy means that evaluates and improves a policy (estimation policy) 
different from that used to control (behavior policy). This makes it possible, 
e.g., to learn an optimal policy by experiencing another one, simpler to 
define

Algorithm:

Q(s,a) ← an arbitrary action-value function : S, A(s) →ℜ
For each trial:

Initialize s

Repeat for each step in the trial:

Choose a from s using a policy based on Q

Take action a, observe r and s’

Q(s,a)← Q(s,a) + α [r + γ maxa’ Q(s’,a’) – Q (s,a)]

s← s’

until s is terminal
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Eligibility traces

An eligibility trace is a temporary record of the occurrence of an event such 
as a state visit or an action selection. 

The trace marks the memory parameters associated with the event as 
eligible for undergoing learning changes.

When reinforcement occurs, the eligible states or actions are assigned credit 
for it.

It is a way to distribute reinforcement not only to the current state or action, 
but also to those that brought the system in the current state. 

Useful in case of sparse (delayed) reinforcement.
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What is an eligibility trace?

Let’s denote the trace for state s at time t as et(s) ∈ ℜ

On each step the traces for each state decay by γλ and the trace of the 
visited state is incremented by 1:

where γ is the usual discount parameter and 0 ≤ λ ≤ 1

This is called an accumulating trace.

In many problems a replace trace may reduce the learning time:
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TD(λ)

The TD error used in the TD methods becomes here:

ΔVt(s) = α [rt+1+ γ Vt(st+1) - Vt(st)] et(s)

As we will see in the algorithm, values of ALL the states are updated using 
the TD error (the term in square brackets), which varies from time to time, 
but is the same for each state. Different states are assigned credit 
proportionally to their eligibility.
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TD(λ)

Initialize V(s) arbitrarily and  e(s) = 0, for all s
Repeat (for each episode): 

Initialize s
Repeat (for each step of episode): 

a ← action selected for s using a policy π based on Q 
Take action a, observe r and  the next state s’   
δ ← r + γ V(s’) – V (s)
e(s)← e(s) +1 
For all s:   

V(s) ← V(s)+α δ e(s)
e(s)← γλ e(s)

s← s’
until s is terminal 
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Q(λ)

Initialize Q(s,a) arbitrarily and  e(s,a) = 0, for all s,a 

Repeat (for each episode): 

Initialize s, a 

Repeat (for each step of episode): 

Take action a, observe r,s’   

Choose a’ from s’ ,  using a policy based on Q    

a* ← argmaxb Q(s’,b) (if  a’ ties for the max, then a* ← a’ )     

δ ← r + γ Q(s’,a*) – Q (s,a)

e(s,a)← e(s,a) +1 

For all s,a:   

Q(s,a) ← Q(s,a)+α δ e(s,a)

If a’ = a*  then  e(s,a)← γλ e(s,a) else e(s,a) ← 0 

s← s’; a← a’

until s is terminal 
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