
Reinforcement Learning
Applications

Andrea Bonarini

Artificial Intelligence and Robotics Lab
Department of Electronics and Information

Politecnico di Milano

E-mail: bonarini@elet.polimi.it
URL:http://www.elet.polimi.it/~bonarini

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 2 of 24

Applications in many fields (1)

Robotics
• (Quadruped Gait Control) Policy Gradient Reinforcement Learning

for Fast Quadrupedal Locomotion by Nate Kohl and Peter Stone

• (Quadruped Ball Acquisition) Learning Ball Acquisition on a Physical
Robot by Peggy Fidelman and Peter Stone

• (Air Hockey) Learning from Observation Using Primitives, and
particularly the movie of a humanoid robot playing air hockey. An
example paper.

• (Active Sensing) Active Sensing Using Reinforcement Learning by
Cody Kwok and Dieter Fox.

http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/icra04.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/icra04.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ISRA2004-chinpinch.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ISRA2004-chinpinch.pdf
http://www.cc.gatech.edu/projects/Learning_Research/
http://www.cc.gatech.edu/projects/Learning_Research/mpeg/hockeyfullsmall.avi
http://www.cc.gatech.edu/projects/Learning_Research/Docs/dbent_iros02.pdf
http://www.cs.washington.edu/robotics/abstracts/active-sensing-iros-04.abstract.html

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 3 of 24

Robot playing Air Hockey (1)

The game consists of two paddles, a puck and a board to play on. A
human player using a mouse controls one paddle. At the other end
is a cyber-human.

The following primitives have been explored:
• Left Bank Shot the player hits the puck, the puck hits the left wall

once and then travels toward the goal.
• Straight Shot the player hits the puck, the puck travels straight

toward the goal without hitting a wall.
• Right Bank Shot the player hits the puck, the puck hits the right wall

once and then travels toward the goal.
• Block the player does not make a shot but attempts to block the puck

from entering the player’s goal area.
• Setup the player is positioning their paddle in preparation to make a

shot.
• Multi-shot the player has blocked or made a shot and the puck does

not have enough velocity to return to the other side of the board.
Therefore the player has the opportunity to make another shot.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 4 of 24

Robot playing Air Hockey (2)

Input for primitives
• XY location of the puck when it

was hit

• velocity of the puck when it was hit

• absolute velocity of the puck after
it was hit

• the point of the backwall that
would be hit if the puck is not
blocked

Output
• Paddle’s velocity components when

hit

• the location of the paddle relatively
to the puck when in contact

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 5 of 24

Applications in many fields (2)

Control
• (Helicopter control) Inverted autonomous helicopter flight via

reinforcement learning, by Andrew Y. Ng, Adam Coates, Mark Diel,
Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger and Eric Liang. In
International Symposium on Experimental Robotics, 2004.

• (Helicopter control) Autonomous helicopter control using
Reinforcement Learning Policy Search Methods, by J.A. Bagnell and J.
Schneider. In Proceedings of the International Conference on Robotics
and Automation, 2001.

Operations Research
• (Pricing) Opportunities and Challenges in Using Online Preference

Data for Vehicle Pricing: A Case Study at General Motors by P.
Rusmevichientong, J. A. Salisbury, L. T. Truss, B. Van Roy, and P. W.
Glynn.

• (Vehicle Routing) Scaling Average-reward Reinforcement Learning
for Product Delivery by S. Proper and P. Tadepalli.

http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
http://www.ri.cmu.edu/pubs/pub_3791.html
http://www.ri.cmu.edu/pubs/pub_3791.html
http://www.stanford.edu/~bvr/psfiles/GM-pricing.pdf
http://www.stanford.edu/~bvr/psfiles/GM-pricing.pdf
http://web.engr.oregonstate.edu/~proper/AAAI04SProper.pdf
http://web.engr.oregonstate.edu/~proper/AAAI04SProper.pdf

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 6 of 24

Helicopter control (1)

First a stochastic, non-linear model of the helicopter has been build
by supervised learning.

Reward function is a quadratic function of the error w.r.t. the
position and speed of the helicopter

Monte Carlo learning on a NN model

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 7 of 24

Helicopter control (2)

Inverted fly control

(http://www.cs.stanford/edu/~ang/rl-videos/helicopter)

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 8 of 24

Applications in many fields (3)

Games
• (Backgammon) Temporal difference learning and TD-Gammon by

Gerald Tesauro, Communications of the ACM, 38(3), March 1995.

• (Solitaire) Solitaire: Man Versus Machine, by X. Yan, P. Diaconis, P.
Rusmevichientong, and B. Van Roy, to appear in Advances in Neural
Information Processing Systems 17, MIT Press, 2005.

• (Chess) The KnightCap program, which went from a rating of 1600 to
a rating of 2100 by altering its heuristic evaluation function using TD-
lambda. CiteSeer has a link to the paper.

• (Checkers) Temporal Difference Learning Applied to a High-
Performance Game-Playing Program by Jonathan Schaeffer, Markian
Hlynka, and Vili Jussila, International Joint Conference on Artificial
Intelligence (IJCAI), pp. 529-534, 2001…

http://www.research.ibm.com/massive/tdl.html
http://www.stanford.edu/~bvr/psfiles/solitaire.pdf
http://www.syseng.anu.edu.au/lsg/knightcap.html
http://citeseer.ist.psu.edu/6262.html
http://www.cs.ualberta.ca/~jonathan/Papers/Papers/td.ps
http://www.cs.ualberta.ca/~jonathan/Papers/Papers/td.ps

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 9 of 24

Robot Maze (1)

This environment uses a very straightforward Q-learning algorithm.
The robot decides on the action to perform by looking at the values of
the next possible actions that can be taken from the current state.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 10 of 24

Robot Maze (2)

The value of a state/action pair, Q(s,a), is the future discounted
reward that the agent can expect to receive by taking action a from
state s. Some examples of state/action pairs would be ((1,1), down)
and ((1,3), up). The goal of the agent is to reach the goal in the
shortest amount of steps. The agent receives a reward of -1 for
each step that is taken. The value of the goal state is 0. The values
are updated each time a move is made using the standard Q-
learning function.

Used to study thepossibilities of Q-learning

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 11 of 24

TD-Gammon

The problem

Play backgammon

Backgammon is a major game, played by more people than chess.
Both chance and strategy are important.

In this figure, white has just rolled the dice and obtained a 5 and a
2. This means that he can move one of his pieces 5 steps and one
(possibly the same piece) 2 steps. For example, he could move two
pieces from the 12 point, one to the 17 point, and one to the 14
point. White's objective is to advance all of his pieces into the last
quadrant (points 19-24) and then off the board. The first player
who removes all his pieces wins. One complication is that the
pieces interact as they pass each other going in different directions.
For example, if it were black's move in the figure, he could use the
dice roll of 2 to move a piece from the 24 point to the 22 point,
``hitting" the white piece there. Pieces that have been hit are
placed on the ``bar" in the middle of the board (where we already
see one previously hit black piece), from whence they re-enter the
race from the start. However, if there are two pieces on a point,
then the opponent cannot move to that point; the pieces are
protected from being hit. Thus, white cannot use his 5-2 dice roll to
move either of his pieces on the 1 point, because their possible
resulting points are occupied by groups of black pieces. Forming
contiguous blocks of occupied points to block the opponent is one
of the elementary strategies of the game.

From (Tesauro, 1992, 1994, 1995)

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 12 of 24

TD-Gammon: RL formulation

The state is represented as follows.

For each point on the backgammon board, 4 units indicate the number of
white pieces on the point. If there were no white pieces, then all 4 units took
on the value zero. If there was one piece, then the first unit took on the
value 1. If there were two pieces, then both the first and the second unit
were 1. If there were three or more pieces on the point, then all of the first
three units were 1. If there were more than three pieces, the fourth unit also
came on, to a degree indicating the number of additional pieces beyond
three. Two additional units encode the number of white and black pieces on
the bar, and two more encode the number of black and white pieces already
successfully removed from the board. Finally, two units indicate in a binary
fashion whether it was white's or black's turn to move.

The decision/control is the move to take, based on the estimation of the
move.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 13 of 24

TD-Gammon: Model

The model of the system is approximated by a two-layer neural network,
trained by TD(0). In input is the state as described above. There are a total of
198 input units to the network. In output the estimate of the value of the input
configuration.

At each step, the weights of the NN are updated by gradient descent on the
square error of J:

(Jt+1-Jt)2

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 14 of 24

TD-Gammon: TD(λ) solution

TD(λ) is used, by updating the weights of the network by:

where x is a configuration, and e is the vector of eligibility traces updated by:

where the gradient is computed by backpropagation.

In TD-Gammon γ=1 and the reward is always zero except when the player
wins, where it takes 100 or loses (-100).

() ()[] tttttttt esVsVrxx
rrr

−++= +++ 111)()(γαϑϑ

()tttt sVee
tϑ

γ r
rr

∇−= −1

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 15 of 24

TD-Gammon: Results

Search space is about 1020 states.

It required 1.500.000 games to learn, most of which generated by
itself.

TD-Gammon 3.0 plays better than the world champions, and also
suggested to them some openings different from the ones used up
to then.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 16 of 24

Applications in many fields (4)

Human-Computer Interaction
• (Spoken Dialogue Systems) Optimizing Dialogue Management with

Reinforcement Learning: Experiments with the NJFun System. S. Singh,
D. Litman, M. Kearns and M. Walker. In Journal of Artificial Intelligence
Research (JAIR), Volume 16, pages 105-133, 2002

• (Software Agent in MOOs) Cobot: A Social Reinforcement Learning
Agent. C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone (2002).
In Proceedings of Neural Information Processing Systems 14 (NIPS),
pp. 1393-1400.

Economics/Finance
• (Trading) Learning to Trade via Direct Reinforcement. John Moody

and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No
4, July 2001.

http://www.eecs.umich.edu/~baveja/Papers/RLDSjair.pdf
http://www.eecs.umich.edu/~baveja/Papers/RLDSjair.pdf
http://www.eecs.umich.edu/~baveja/Papers/CobotNIPS01.pdf
http://www.eecs.umich.edu/~baveja/Papers/CobotNIPS01.pdf

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 17 of 24

Applications in many fields (5)

Complex Simulation
• (Robot_Soccer) Scaling Reinforcement Learning toward RoboCup

Soccer, by Peter Stone and Richard S. Sutton, Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 537–
544, Morgan Kaufmann, San Francisco, CA, 2001.

Marketing
• (Targeted_Marketing) Cross Channel Optimized Marketing by

Reinforcement Learning, by Naoki Abe, Naval Verma, Chid Apte and
Robert Schroko, Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, August 2004.

Telecommunications
• (Channel allocation on cell phone systems) Reinforcement

Learning for Dynamic Channel Allocation in Cellular Telephone Systems
Satinder Singh, Dimitri Bertsekas, Advances in Neural Information
Processing Systems (1997)

http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML2001.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML2001.pdf
http://www.research.ibm.com/people/n/nabe/kdd04AVAS.pdf
http://www.research.ibm.com/people/n/nabe/kdd04AVAS.pdf

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 18 of 24

Channel allocation in cell phone systems

From (S. Singh, D. Bartsekas, 1996)

The problem

Allocate channels in cell phone systems

The market area is divided up into cells,

shown here as hexagons. The available

bandwidth is divided into channels.

Each cell has a base station responsible

for calls within its area. Calls arrive randomly,

have random durations and callers may move

around in the market area creating handoffs.

The channel reuse constraint requires that

there be a minimum distance between

simultaneous reuse of the same channel.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 19 of 24

RL formulation

The state is represented as:
• The list of occupied and unoccupied channels at each cell. This is the

configuration of the cellular system. It is exponential in the number of
cells.

• The event that causes the state transition (arrival, departure, or
handoff). This component of the state is uncontrollable.

The decision/control applied at the time of a call departure is the
reassignment of the channels in use with the aim of creating a more
favorable channel packing pattern among the cells (one that will
leave more channels free for future assignments).

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 20 of 24

Optimization function

We have to maximize

where E{.} is the expectation operator, c(t) is the number of ongoing calls at
time t, and β is a discount factor that makes immediate profit more valuable
than future profit. Maximizing J is equivalent to minimizing the expected
(discounted) number of blocked calls over an infinite horizon.

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∫
∞

−

0
dttceEJ tβ

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 21 of 24

A TD(0) solution

TD(0) is used, by updating the estimate of J with:

where x is a configuration, e is the random event (a call arrival or departure),
A(x, e) is the set of actions available in the current state (x, e), Δt is the
random time until the next event, c(x, a, Δt) is the effective immediate
payoff with the discounting, and γ (Δt) is the effective discount for the next
configuration y.

()
() () ()[]yJttaxcxJxJ t

exAa
tt 1

,
1 ,,max)()1()(+

∈
+ Δ+Δ+−= γαα

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 22 of 24

Decisions

Call Arrival:
When a call arrives, evaluate the next configuration for each free
channel and assign the channel that leads to the configuration with the
largest estimated value. If there is no free channel at all, no decision
has to be made.

Call Termination:
When a call terminates, one by one each ongoing call in that cell is
considered for reassignment to the just freed channel; the resulting
configurations are evaluated and compared to the value of not doing
any reassignment at all. The action that leads to the highest value
configuration is then executed.

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 23 of 24

Model

The model of the system is approximated by a linear neural network,
trained by TD(0). In input are the number of free channels for each
cell, and the number of times a channel is used in a four cells radius,
for each cell-channel pair.

The problem is exponential and the state space for a 7x7 grid consists
of about 7049 states.

At each step, the weights of the NN are updated by gradient descent
on the square error of J:

(Jt+1-Jt)2

Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it) - 24 of 24

Tests and results Demo: http://www.eecs.umich.edu/~baveja/Demo.html

Graphs from (S. Singh, D. Bartsekas, 1996)

	Reinforcement Learning �Applications
	Applications in many fields (1)
	Robot playing Air Hockey (1)
	Robot playing Air Hockey (2)
	Applications in many fields (2)
	Helicopter control (1)
	Helicopter control (2)
	Applications in many fields (3)
	Robot Maze (1)
	Robot Maze (2)
	TD-Gammon
	TD-Gammon: RL formulation
	TD-Gammon: Model
	TD-Gammon: TD() solution
	TD-Gammon: Results
	Applications in many fields (4)
	Applications in many fields (5)
	Channel allocation in cell phone systems
	RL formulation
	Optimization function
	 A TD(0) solution
	Decisions
	Model
	Tests and results

