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Applications in many fields (1)

Robotics 
• (Quadruped Gait Control) Policy Gradient Reinforcement Learning 

for Fast Quadrupedal Locomotion by Nate Kohl and Peter Stone 

• (Quadruped Ball Acquisition) Learning Ball Acquisition on a Physical 
Robot by Peggy Fidelman and Peter Stone 

• (Air Hockey) Learning from Observation Using Primitives, and 
particularly the movie of a humanoid robot playing air hockey. An 
example paper. 

• (Active Sensing) Active Sensing Using Reinforcement Learning by 
Cody Kwok and Dieter Fox. 

http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/icra04.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/icra04.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ISRA2004-chinpinch.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ISRA2004-chinpinch.pdf
http://www.cc.gatech.edu/projects/Learning_Research/
http://www.cc.gatech.edu/projects/Learning_Research/mpeg/hockeyfullsmall.avi
http://www.cc.gatech.edu/projects/Learning_Research/Docs/dbent_iros02.pdf
http://www.cs.washington.edu/robotics/abstracts/active-sensing-iros-04.abstract.html
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Robot playing Air Hockey (1)

The game consists of two paddles, a puck and a board to play on. A 
human player using a mouse controls one paddle. At the other end 
is a cyber-human.

The following primitives have been explored:
• Left Bank Shot the player hits the puck, the puck hits the left wall 

once and then travels toward the goal. 
• Straight Shot the player hits the puck, the puck travels straight 

toward the goal without hitting a wall.
• Right Bank Shot the player hits the puck, the puck hits the right wall 

once and then travels toward the goal.
• Block the player does not make a shot but attempts to block the puck 

from entering the player’s goal area.
• Setup the player is positioning their paddle in preparation to make a 

shot.
• Multi-shot the player has blocked or made a shot and the puck does 

not have enough velocity to return to the other side of the board. 
Therefore the player has the opportunity to make another shot.
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Robot playing Air Hockey (2)

Input for primitives
• XY location of the puck when it 

was hit

• velocity of the puck when it was hit

• absolute velocity of the puck after 
it was hit

• the point of the backwall that 
would be hit if the puck is not 
blocked

Output
• Paddle’s velocity components when 

hit

• the location of the paddle relatively 
to the puck when in contact
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Applications in many fields (2)

Control 
• (Helicopter control) Inverted autonomous helicopter flight via 

reinforcement learning, by Andrew Y. Ng, Adam Coates, Mark Diel, 
Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger and Eric Liang. In 
International Symposium on Experimental Robotics, 2004. 

• (Helicopter control) Autonomous helicopter control using 
Reinforcement Learning Policy Search Methods, by J.A. Bagnell and J. 
Schneider. In Proceedings of the International Conference on Robotics 
and Automation, 2001. 

Operations Research 
• (Pricing) Opportunities and Challenges in Using Online Preference 

Data for Vehicle Pricing: A Case Study at General Motors by P. 
Rusmevichientong, J. A. Salisbury, L. T. Truss, B. Van Roy, and P. W. 
Glynn. 

• (Vehicle Routing) Scaling Average-reward Reinforcement Learning 
for Product Delivery by S. Proper and P. Tadepalli. 

http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
http://www.ri.cmu.edu/pubs/pub_3791.html
http://www.ri.cmu.edu/pubs/pub_3791.html
http://www.stanford.edu/~bvr/psfiles/GM-pricing.pdf
http://www.stanford.edu/~bvr/psfiles/GM-pricing.pdf
http://web.engr.oregonstate.edu/~proper/AAAI04SProper.pdf
http://web.engr.oregonstate.edu/~proper/AAAI04SProper.pdf
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Helicopter control (1)

First a stochastic, non-linear model of the helicopter has been build 
by supervised learning.

Reward function is a quadratic function of the error w.r.t. the 
position and speed of the helicopter

Monte Carlo learning on a NN model
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Helicopter control (2)

Inverted fly control 

(http://www.cs.stanford/edu/~ang/rl-videos/helicopter)
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Applications in many fields (3)

Games 
• (Backgammon) Temporal difference learning and TD-Gammon by 

Gerald Tesauro, Communications of the ACM, 38(3), March 1995. 

• (Solitaire) Solitaire: Man Versus Machine, by X. Yan, P. Diaconis, P. 
Rusmevichientong, and B. Van Roy, to appear in Advances in Neural 
Information Processing Systems 17, MIT Press, 2005. 

• (Chess) The KnightCap program, which went from a rating of 1600 to 
a rating of 2100 by altering its heuristic evaluation function using TD-
lambda. CiteSeer has a link to the paper. 

• (Checkers) Temporal Difference Learning Applied to a High-
Performance Game-Playing Program by Jonathan Schaeffer, Markian 
Hlynka, and Vili Jussila, International Joint Conference on Artificial 
Intelligence (IJCAI), pp. 529-534, 2001…

http://www.research.ibm.com/massive/tdl.html
http://www.stanford.edu/~bvr/psfiles/solitaire.pdf
http://www.syseng.anu.edu.au/lsg/knightcap.html
http://citeseer.ist.psu.edu/6262.html
http://www.cs.ualberta.ca/~jonathan/Papers/Papers/td.ps
http://www.cs.ualberta.ca/~jonathan/Papers/Papers/td.ps
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Robot Maze (1)

This environment uses a very straightforward Q-learning algorithm. 
The robot decides on the action to perform by looking at the values of 
the next possible actions that can be taken from the current state. 
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Robot Maze (2)

The value of a state/action pair, Q(s,a), is the future discounted 
reward that the agent can expect to receive by taking action a from 
state s. Some examples of state/action pairs would be ((1,1), down) 
and ((1,3), up). The goal of the agent is to reach the goal in the 
shortest amount of steps. The agent receives a reward of -1 for 
each step that is taken. The value of the goal state is 0. The values 
are updated each time a move is made using the standard Q-
learning function.

Used to study thepossibilities of Q-learning
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TD-Gammon

The problem

Play backgammon

Backgammon is a major game, played by more people than chess. 
Both chance and strategy are important.

In this figure, white has just rolled the dice and obtained a 5 and a 
2. This means that he can move one of his pieces 5 steps and one 
(possibly the same piece) 2 steps. For example, he could move two 
pieces from the 12 point, one to the 17 point, and one to the 14 
point. White's objective is to advance all of his pieces into the last 
quadrant (points 19-24) and then off the board. The first player 
who removes all his pieces wins. One complication is that the 
pieces interact as they pass each other going in different directions. 
For example, if it were black's move in the figure, he could use the 
dice roll of 2 to move a piece from the 24 point to the 22 point, 
``hitting" the white piece there. Pieces that have been hit are 
placed on the ``bar" in the middle of the board (where we already 
see one previously hit black piece), from whence they re-enter the 
race from the start. However, if there are two pieces on a point, 
then the opponent cannot move to that point; the pieces are 
protected from being hit. Thus, white cannot use his 5-2 dice roll to 
move either of his pieces on the 1 point, because their possible 
resulting points are occupied by groups of black pieces. Forming 
contiguous blocks of occupied points to block the opponent is one 
of the elementary strategies of the game. 

From (Tesauro, 1992, 1994, 1995)
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TD-Gammon: RL formulation

The state is represented as follows.

For each point on the backgammon board, 4 units indicate the number of 
white pieces on the point. If there were no white pieces, then all 4 units took 
on the value zero. If there was one piece, then the first unit took on the 
value 1. If there were two pieces, then both the first and the second unit 
were 1. If there were three or more pieces on the point, then all of the first 
three units were 1. If there were more than three pieces, the fourth unit also 
came on, to a degree indicating the number of additional pieces beyond 
three. Two additional units encode the number of white and black pieces on 
the bar, and two more encode the number of black and white pieces already 
successfully removed from the board. Finally, two units indicate in a binary 
fashion whether it was white's or black's turn to move. 

The decision/control is the move to take, based on the estimation of the 
move.
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TD-Gammon: Model

The model of the system is approximated by a two-layer neural network, 
trained by TD(0). In input is the state as described above. There are a total of 
198 input units to the network. In output the estimate of the value of the input 
configuration.

At each step, the weights of the NN are updated by gradient descent on the 
square error of J:

(Jt+1-Jt)2
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TD-Gammon: TD(λ) solution

TD(λ) is used, by updating the weights of the network by:

where x is a configuration, and e is the vector of eligibility traces updated by:

where the gradient is computed by backpropagation.

In TD-Gammon γ=1 and the reward is always zero except when the player 
wins, where it takes 100 or loses (-100).
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TD-Gammon: Results

Search space is about 1020 states.

It required 1.500.000 games to learn, most of which generated by 
itself.

TD-Gammon 3.0 plays better than the world champions, and also 
suggested to them some openings different from the ones used up 
to then.
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Applications in many fields (4)

Human-Computer Interaction 
• (Spoken Dialogue Systems) Optimizing Dialogue Management with 

Reinforcement Learning: Experiments with the NJFun System. S. Singh, 
D. Litman, M. Kearns and M. Walker. In Journal of Artificial Intelligence 
Research (JAIR), Volume 16, pages 105-133, 2002 

• (Software Agent in MOOs) Cobot: A Social Reinforcement Learning 
Agent. C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone (2002). 
In Proceedings of Neural Information Processing Systems 14 (NIPS), 
pp. 1393-1400. 

Economics/Finance 
• (Trading) Learning to Trade via Direct Reinforcement. John Moody 

and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No 
4, July 2001. 

http://www.eecs.umich.edu/~baveja/Papers/RLDSjair.pdf
http://www.eecs.umich.edu/~baveja/Papers/RLDSjair.pdf
http://www.eecs.umich.edu/~baveja/Papers/CobotNIPS01.pdf
http://www.eecs.umich.edu/~baveja/Papers/CobotNIPS01.pdf
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Applications in many fields (5)

Complex Simulation 
• (Robot_Soccer) Scaling Reinforcement Learning toward RoboCup 

Soccer, by Peter Stone and Richard S. Sutton, Proceedings of the 
Eighteenth International Conference on Machine Learning, pp. 537–
544, Morgan Kaufmann, San Francisco, CA, 2001. 

Marketing 
• (Targeted_Marketing) Cross Channel Optimized Marketing by 

Reinforcement Learning, by Naoki Abe, Naval Verma, Chid Apte and 
Robert Schroko, Proceedings of the Tenth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, August 2004. 

Telecommunications
• (Channel allocation on cell phone systems) Reinforcement 

Learning for Dynamic Channel Allocation in Cellular Telephone Systems
Satinder Singh, Dimitri Bertsekas, Advances in Neural Information 
Processing Systems  (1997)

http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML2001.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML2001.pdf
http://www.research.ibm.com/people/n/nabe/kdd04AVAS.pdf
http://www.research.ibm.com/people/n/nabe/kdd04AVAS.pdf
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Channel allocation in cell phone systems

From (S. Singh, D. Bartsekas, 1996)

The problem

Allocate channels in cell phone systems

The market area is divided up into cells, 

shown here as hexagons. The available 

bandwidth is divided into channels. 

Each cell has a base station responsible 

for calls within its area. Calls arrive randomly, 

have random durations and callers may move 

around in the market area creating handoffs. 

The channel reuse constraint requires that 

there be a minimum distance between 

simultaneous reuse of the same channel.
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RL formulation

The state is represented as:
• The list of occupied and unoccupied channels at each cell. This is the 

configuration of the cellular system. It is exponential in the number of 
cells.

• The event that causes the state transition (arrival, departure, or 
handoff). This component of the state is uncontrollable.

The decision/control applied at the time of a call departure is the 
reassignment of the channels in use with the aim of creating a more 
favorable channel packing pattern among the cells (one that will 
leave more channels free for future assignments).



Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it)  - 20 of 24

Optimization function

We have to maximize

where E{.} is the expectation operator, c(t) is the number of ongoing calls at 
time t, and β is a discount factor that makes immediate profit more valuable 
than future profit. Maximizing J is equivalent to minimizing the expected 
(discounted) number of blocked calls over an infinite horizon.
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A TD(0) solution

TD(0) is used, by updating the estimate of J with:

where x is a configuration, e is the random event (a call arrival or departure), 
A(x, e) is the set of actions available in the current state (x, e), Δt is the 
random time until the next event, c(x, a, Δt) is the effective immediate 
payoff with the discounting, and γ (Δt) is the effective discount for the next 
configuration y.
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Decisions

Call Arrival: 
When a call arrives, evaluate the next configuration for each free 
channel and assign the channel that leads to the configuration with the 
largest estimated value. If there is no free channel at all, no decision 
has to be made.

Call Termination: 
When a call terminates, one by one each ongoing call in that cell is 
considered for reassignment to the just freed channel; the resulting 
configurations are evaluated and compared to the value of not doing 
any reassignment at all. The action that leads to the highest value 
configuration is then executed.



Soft Computing examples and design © A. Bonarini (bonarini@elet.polimi.it)  - 23 of 24

Model

The model of the system is approximated by a linear neural network, 
trained by TD(0). In input are the number of free channels for each 
cell, and the number of times a channel is used in a  four cells radius, 
for each cell-channel pair. 

The problem is exponential and the state space for a 7x7 grid consists 
of about 7049 states.

At each step, the weights of the NN are updated by gradient descent 
on the square error of J:

(Jt+1-Jt)2
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Tests and results Demo: http://www.eecs.umich.edu/~baveja/Demo.html

Graphs from (S. Singh, D. Bartsekas, 1996)
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