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Motivation

Estimation of Distribution Algorithms (EDAs)
Probabilistic Model-Building Genetic Algorithms (PMBGAs)

Iterated Density-Estimation Evolutionary Algorithms (IDEAs)

modern form of evolutionary algorithm

solve problem classes where standard GAs fail

trajectories
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Quick Review of Probability I

Probability

7 random observations of my state of
mind

if X is a random variable representing my
state of mind, can estimate its
distribution as:

P (X = happy) =
4

7

P (X = sad) =
3

7

State

sad
sad

happy
happy

sad
happy
happy



Quick Review of Probability II

Conditional Probability

if D is the day,

P (X = happy|D = Monday) =
1

3

P (X = sad|D = Monday) =
2

3

enables a more ‘refined’ model

conditional probability can be
calculated using:

P (X = x |D = d) =
P (X = x ,D = d)

P (D = d)

Day State

Monday sad
Monday sad
Monday happy
Friday happy
Friday sad
Friday happy
Friday happy



Genetic Algorithm Process

Variation

SelectionReplacement

Initialisation Termination



Estimation of Distribution Algorithm Process

Selection

Estimation

Initialisation Termination

Generation

Probability
Model

Probability
Distribution



A Simple Example - Configuration

Genome (Representation)

A BAB

4 genes (Xi , i = 0, 1, 2, 3); each gene is either A or B

Probability Model

0 1 2 3

assume each gene is independent

Probability Distribution

(p0, p1, p2, p3)

where P (Xi = A) = pi and thus P (Xi = B) = 1− pi



A Simple Example - Process
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0 1 2 3
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A Simple Example - Process

Selection

Estimation

Termination

Generation

0 1 2 3

Initialisation

(1, 0.25, 0.75, 0.75)
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A Simple Example - Process

Estimation

Termination

0 1 2 3

Initialisation

Generation

Selection

(1, 0.25, 0.75, 0.75)



A Simple Example - Process

Termination

(1, 0, 1, 1)

0 1 2 3
Initialisation

Generation
Estimation

Selection



A Simple Example - Process

Termination

(1, 0, 1, 1)

0 1 2 3

Initialisation

Generation
Estimation

Selection



A Simple Example - Key Points I

Initialisation

Initially, don’t know distributions of A and B in best solutions, so
assume equally likely: pi = 0.5.

Generation

Could use the following method to pick the value of each gene, Xi :

1 pick a (uniformly distributed) random number, γ, between 0
and 1

2 if γ ≤ pi , then set Xi to A, otherwise to B

Note: The values in the generated population will match the
distribution closely, but not necessarily exactly.



A Simple Example - Key Points II

Selection

Can use same selection methods as for standard GAs, e.g.
proportional selection (roulette wheel).

Estimation

In this example, simply count the number of As for gene Xi and
divide by the number of individuals to give pi .

Termination

Sensible criterion is for all pi to be either 0 or 1.
Note: The solution is ABAA; it is not (1,0,1,1). The latter is the
probability distribution at termination.



EDAs as GAs with Variance Operator

Selection

Variation



EDAs as GAs with Variance Operator

Selection

0 1 2 3Generation Estimation



Univariate Probability Models

0 1 2 3

This model is used by the following EDAs (although the algorithm
itself differs slightly):

Univariate Marginal Distribution Algorithm (UMDA)
[Mühlenbein and Paaß, 1996]

Population-Based Incremental Learning (PBIL) [Baluja, 1994]

Compact Genetic Algorithm (cGA) [Harik et al., 1999]

But . . .

Is the assumption of independent probability distributions for each
gene an oversimplification?
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Conditional Probability Models

Probability distribution for a gene depends on (conditional on) the
value of other genes.

Example

0

1

2

3 distribution of X1 is independent (as before)

but, distribution of X3 depends on value of X1

distribution of X2 depends on value of X3

distribution of X0 depends on values of X1 and X2

(arrows go from parent(s) to dependent child)

Need to order genes appropriately in order to generate from, and
estimate, the distribution.



Conditional Probability Model Calculations I

Estimation Example

0

1

2

3

A

A

B

A

BA

BA

P (X1 = A) = 0.5
P (X0 = A|X1 = A) = 0.5
P (X0 = A|X1 = B) = 1

and so P (X1 = B) = 0.5
and so P (X0 = B|X1 = A) = 0.5
and so P (X0 = B|X1 = B) = 0



Conditional Probability Model Calculations II

Generation Example

P (X1 = A) = 0.5

P (X0 = A|X1 = A) = 0.5

P (X0 = A|X1 = B) = 1 0

1

2

3

1 randomly pick γ1 between 0 and 1, say γ1 = 0.428 . . .

2 since γ1 ≤ P (X1 = A), set X1 to A

3 now pick γ0 between 0 and 1, say γ0 = 0.732 . . .

4 since γ0 > P (X0 = A|X1 = A), set X0 to B

5 so in our generated individual, X0 = B, X1 = A



Subset Probability Models

Probability distributions considered for a subset of genes taken as a
whole.

Example

for each subset, need to store probability of
all combinations, e.g.:

P (X1 = A,X3 = A)
P (X1 = A,X3 = B)
P (X1 = B,X3 = A)
P (X1 = B,X3 = B)

0

1

2

3



Why Use More Complex Models?

Better able to model structure of underlying problem in terms
of the relationship between genes

Processing for estimating and generating from a more complex
model is not usually significant compared to fitness evaluation

Factorised Distribution Algorithm (FDA) [Mühlenbein,

Mahning, and Rodriguez, 1998] uses a predefined model using
conditional probability and subsets

But . . .

Is is realistic that we define structure of probability model for
problems in general?



Linkage (Model) Learning

So far, examples have used a
predefined probability model
that stays the same throughout
the algorithm

Many powerful EDAs ‘learn’ the
probability model at they go

Often the probability model is
derived during the estimation
step of each generation

Selection

Estimation

Initialisation Termination

Generation

Probability
Model

Probability
Distribution



Model Metrics

To be able to choose from all possible models, need to have a
measure of how good a particular model is at representing the
selected population

Examples of metrics include:

Bayesian Dirichlet metric
Kullback-Leibler divergence
Pearson’s chi-square statistic
minimum description length



Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

1 assume no connections (all genes
independent)

2 consider all valid operations on the
model (e.g. adding a link from a
parent to a child)

3 if no operation improves the
metric, stop

4 otherwise perform the operation
that improves the metric the most

5 repeat from step (2)



Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

1 assume no connections (all genes
independent)

2 consider all valid operations on the
model (e.g. adding a link from a
parent to a child)

3 if no operation improves the
metric, stop

4 otherwise perform the operation
that improves the metric the most

5 repeat from step (2)



Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

1 assume no connections (all genes
independent)

2 consider all valid operations on the
model (e.g. adding a link from a
parent to a child)

3 if no operation improves the
metric, stop

4 otherwise perform the operation
that improves the metric the most

5 repeat from step (2)



Deriving the Model

Given a metric, a possible method of deriving the model from the
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Examples of Linkage Learning EDAs I

Mutual Information Maximizing Input Clustering (MIMIC)

De Bonet et al., 1997

Bivariate Marginal Distribution Algorithm (BMDA)

Pelikan and Mühlenbein, 1999



Examples of Linkage Learning EDAs II

Extended Compact Genetic Algorithm (ECGA)

Harik, 1999

Bayesian Optimization Algorithm (BOA)

Pelikan, Goldberg and Cantú-Paz, 2000
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Building Blocks

a schema is bit pattern template using the alphabet {0,1,*}
where * is a wildcard

defining length is distance between first and last non-wildcard
symbols

order is number of non-wildcard symbols

Example

schema: H = ∗10∗
representatives: 0100, 0101, 1100, 1101
defining length: δ(H) = 1 order: o(H) = 2

building blocks are short, low order, highly fit schemata

GAs work well when building blocks propogate through the
population and are combined to produce fit individuals



Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

1

00 1 0

110



Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

1

00 1 0

110

1 0

0

1 0

110



Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

1

00 1 0

110

1 0

0 1 0 1

10



Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

1

00 1 0

110

1 0

0 1

0

11

0



Case Study - Additive Deceptive Function

Genome

1 010 01

X
0
X
1
X
2
X
3
X
4
X
5

Fitness

f = g(X0,X1,X2) + g(X3,X4,X5)

where g(·) is:

0 1 2 3
0

1

number of ones

g

global optimum is clearly 111111, but deceptive nature of g(·)
tends to move population towards local optimum at 000000



Results Using Standard GA
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Figure: proportion of population having
schemata 111*** and 000*** at each
generation; average over 10 runs

population size 1000

one-point crossover
(with probability 1)

no mutation

fitness proportional
selection



Hypothesis

0 1 2 3
0

1

number of ones

g 1 1 01 0 000 1

schemata with 2 ones are quickly eliminated from population

crossover between 111 and other schemata is more often
destructive than not

crossover between schemata is unlikely to produce 111

therefore, schemata with few ones begin to dominate

since 000 is the fitter of the few ones schemata, algorithm
eventually converges to this solution



Results Using EDA
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Hypothesis I

0

1 2

1

1

0

1

00

0

1

0 0

1

1

1 1

0

0

0

0

0 0

1

1

1 1

0.8

0.0

0.0

1.0

0.45

0.9

0.8

0.8

0.0

0.625average average

in initial random population, individuals where X0 = 0 are on
average fitter than X0 = 1

so schemata with X0 = 0 occur more frequently in each new
generation



Hypothesis II

by selection over a number of generations, algorithm then
establishes probability distribution for model:

given X0 = 0, fitter individuals occur when X1 = 0 and X2 = 0

given X0 = 1, fitter individuals occur when X1 = 1 and X2 = 1

so probability distribution now results in generation of
schemata 000 and 111 more often than others

when this occurs, individuals where X0 = 0 are now on
average less fit than X0 = 1

so 111 schema begins to dominate, and algorithm converges
on this solution
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Billion-Variable EDA

Towards Billion Bit Optimization via Efficient Genetic Algorithms
Kumara Sastry, David E Goldberg, Xavier Llorà

IlliGAL Report No. 2007007
Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign

Best EDA paper award at Genetic and Evolutionary Computation
Conference (GECCO) 2007



Problem - Noisy, OneMax

Representation

109 variables xi ∈ {0, 1}

Objective

Optimal solution has all xi = 1 (‘OneMax’)

Fitness

f =
∑

xi +N (0, σ2)



Solution Method

Algorithm

Compact Genetic Algorithm (CGA) - a univariate EDA

. . .

0 1 2 3 4 109-1

Implementation

. . .

0 1 2 127 128

. . .

255 256

. . .

Processor A Processor B



Results

Extrapolation from Trajectory

For 109 variables, algorithm would take too long to converge even
on large parallel computing cluster.

Measured time for algorithm to reach point where all probabilities
were > 0.501 (from initial probability of 0.5). Extrapolated results
from small problems where full convergence was possible.

Novelty

Real-world problem size

Very efficient parallel implementation of CGA

Although simple EDA, superior (more scalable) to other
approaches such as hill-climbing on this problem



Summary

EDAs are a modern form of evolutionary algorithm

Wide variety of algorithms ranging from simple (e.g. CGA) to
advanced, state-of-the-art (e.g. BOA)

Demonstrate advantages over standard GAs on some problem
classes



Selected Resources

Survey of Bit-String EDAs

Martin Pelikan, David Goldberg and Fernando Lobo
A Survey of Optimization by Building and Using Probabilistic
Models
IlliGAL Report No. 99018, University of Illinois, 1999

Missouri Estimation of Distribution Algorithms Laboratory

http://medal.cs.umsl.edu/
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