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Estimation of Distribution Algorithms (EDAs)
Probabilistic Model-Building Genetic Algorithms (PMBGAS)

Iterated Density-Estimation Evolutionary Algorithms (IDEAs)

@ modern form of evolutionary algorithm
@ solve problem classes where standard GAs fail

@ trajectories
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Quick Review of Probability |

Probability

@ 7 random observations of my state of State
mind

sad

e if X is a random variable representing my sad
state of mind, can estimate its happy
distribution as: happy

4 sad
P (X = happy) = = :appy

3 a

P(X =sad) = - PPy




Quick Review of Probability Il

Conditional Probability

e if D is the day,

1 Day State
( izl ony) 3 Monday | sad
2
P (X = sad|D = Monday) = 3 Monday | sad

Monday | happy
Friday | happy
Friday sad
Friday | happy
Friday | happy

@ enables a more ‘refined’ model

@ conditional probability can be
calculated using:

P(X = x,D = d)
P (D = d)

P(X =x|D=d)=
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A Simple Example - Configuration

Genome (Representation)
4 genes (X;, i =0,1,2,3); each gene is either A or B
Probability Model

assume each gene is independent

<

Probability Distribution

(P07P1>P2>P3)
where P (X; = A) = p; and thus P(X; =B) =1 — p;
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A Simple Example - Process
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A Simple Example - Process
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A Simple Example - Process
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A Simple Example - Process
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A Simple Example - Key Points |

Initialisation

Initially, don’t know distributions of A and B in best solutions, so
assume equally likely: p; = 0.5.

Generation

| A\

Could use the following method to pick the value of each gene, X;:

@ pick a (uniformly distributed) random number, -y, between 0
and 1

Q if v < pj, then set X; to A, otherwise to B

Note: The values in the generated population will match the
distribution closely, but not necessarily exactly.

A\




A Simple Example - Key Points Il

Selection
Can use same selection methods as for standard GAs, e.g.
proportional selection (roulette wheel).

| A\

Estimation

In this example, simply count the number of As for gene X; and
divide by the number of individuals to give p;.

Termination

| A\

Sensible criterion is for all p; to be either 0 or 1.
Note: The solution is ABAA,; it is not (1,0,1,1). The latter is the
probability distribution at termination.




EDAs as GAs with Variance Operator
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EDAs as GAs with Variance Operator
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This model is used by the following EDAs (although the algorithm
itself differs slightly):

e Univariate Marginal Distribution Algorithm (UMDA)
[Miihlenbein and PaaB, 1996]

@ Population-Based Incremental Learning (PBIL) [Baluja, 1994]
e Compact Genetic Algorithm (cGA) [Harik et al., 1999]

Is the assumption of independent probability distributions for each
gene an oversimplification?
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Conditional Probability Models

Probability distribution for a gene depends on (conditional on) the
value of other genes.

Example

e distribution of Xj is independent (as before)
@ but, distribution of X3 depends on value of X;

o distribution of X, depends on value of X3
Q o distribution of Xy depends on values of X; and X,

(arrows go from parent(s) to dependent child)

<

Need to order genes appropriately in order to generate from, and
estimate, the distribution.



Conditional Probability Model Calculations |

Estimation Example

P G

© @
P(Xi=A)=05 and so P(X; = B) = 0.5
P(Xo=A[X1=A)=0.5 and so P(Xp =B|X; =A) =05
P(Xo=AlX1=B)=1 and so P(Xo =B|X; =B) =0 |




Conditional Probability Model Calculations Il

Generation Example

e P(X; =A)=05
(] P(Xo :A|X1 :A) =0.5
OP(X():Ale:B):]. @ @

@ randomly pick v; between 0 and 1, say 73 = 0.428...
@ since 11 <P(Xy =A), set X; to A

© now pick o between 0 and 1, say 79 = 0.732. ..

Q since o > P (Xp = A| Xy = A), set Xp to B

© so in our generated individual, Xp = B, X1 = A




Subset Probability Models

Probability distributions considered for a subset of genes taken as a
whole.

for each subset, need to store probability of

all combinations, e.g.: NI
P(X, = A, X5 = A) LA X
]P)(Xle,X?,:B) PGS
P(X; =B, X3 = A) '@ @
P(X; =B, X3 =B)




Why Use More Complex Models?

@ Better able to model structure of underlying problem in terms
of the relationship between genes

@ Processing for estimating and generating from a more complex
model is not usually significant compared to fitness evaluation

e Factorised Distribution Algorithm (FDA) [Miihlenbein,
Mahning, and Rodriguez, 1998] uses a predefined model using
conditional probability and subsets

Is is realistic that we define structure of probability model for
problems in general?




Linkage (Model) Learning

@ So far, examples have used a
predefined probability model

that stays the same throughout — —
the algorithm S ’ %G

@ Many powerful EDAs ‘learn’ the
probability model at they go

@ Often the probability model is
derived during the estimation
step of each generation



Model Metrics

@ To be able to choose from all possible models, need to have a
measure of how good a particular model is at representing the
selected population

@ Examples of metrics include:

Bayesian Dirichlet metric

o Kullback-Leibler divergence

e Pearson's chi-square statistic
e minimum description length



Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

@ assume no connections (all genes
O O independent)

© O
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Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

@ assume no connections (all genes

O O independent)
© consider all valid operations on the
model (e.g. adding a link from a
O O parent to a child)
© if no operation improves the
metric, stop
@ otherwise perform the operation
that improves the metric the most



Deriving the Model

Given a metric, a possible method of deriving the model from the
selected population is the following greedy algorithm:

S O

X

o

o

@ assume no connections (all genes
independent)

© consider all valid operations on the
model (e.g. adding a link from a
parent to a child)

© if no operation improves the
metric, stop

@ otherwise perform the operation
that improves the metric the most

© repeat from step (2)



Examples of Linkage Learning EDAs |

Mutual Information Maximizing Input Clustering (MIMIC)

®.

De Bonet et al., 1997

®.
o" 'O

A\

Bivariate Marginal Distribution Algorithm (BMDA)

O‘O O‘O‘O

Pelikan and Mihlenbein, 1999




Examples of Linkage Learning EDAs ||

Extended Compact Genetic Algorithm (ECGA)

Harik, 1999

A\

Bayesian Optimization Algorithm (BOA)

O\OxC)\O O‘O

Pelikan, Goldberg and Cantd-Paz, 2000
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Building Blocks

@ a schema is bit pattern template using the alphabet {0,1,*}
where * is a wildcard

@ defining length is distance between first and last non-wildcard
symbols

@ order is number of non-wildcard symbols

schema: H = %10

representatives: 0100, 0101, 1100, 1101
defining length: 6(H) =1 order: o(H) =2

@ building blocks are short, low order, highly fit schemata

@ GAs work well when building blocks propogate through the
population and are combined to produce fit individuals



Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

[oJfo] o]
[1[o]1]7]




Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

[o Ao o]
[1]
[1]

gel
=

1

[o]

=

o
-] =]
=] =]




Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover
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Disruptive Crossover

Some crossover operators can disrupt building blocks.

Example - One-Point Crossover

SiEMEe
ENEl-
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H




Case Study - Additive Deceptive Function

Genome Fitness

f = g(Xo, X1, X2) + g(X3, Xa, Xs)

X X X X X, X
o2 s where g(+) is:

0 O
0 1 2 3
number of ones

global optimum is clearly 111111, but deceptive nature of g(+)
tends to move population towards local optimum at 000000



Results Using Standard GA
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Figure: proportion of population having
schemata 111*** and 000*** at each

generation; average over 10 runs

@ population size 1000
@ one-point crossover

(with probability 1)
@ no mutation

@ fitness proportional
selection



Hypothesis

A [clof [ofo]c]

number of ones
@ schemata with 2 ones are quickly eliminated from population

@ crossover between 111 and other schemata is more often
destructive than not

@ crossover between schemata is unlikely to produce 111
@ therefore, schemata with few ones begin to dominate

@ since 000 is the fitter of the few ones schemata, algorithm
eventually converges to this solution



Results Using EDA

@ population size 1000

o fitness proportional
selection

@ predefined model

0 L L N e e s v
0 50 100 15| 200 250
Generation

Figure: proportion of population having
schemata 111*** and 000*** at each
generation; average over 10 runs

Proportion of Population
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Hypothesis |

0.8 0.9

Q o] oo 0.8

Eoll oo 0.8

0 @ B o [o A oo
average  0.45 average  0.625

@ in initial random population, individuals where Xq = 0 are on
average fitter than Xp =1

@ so schemata with Xo = 0 occur more frequently in each new
generation



Hypothesis |l

@ by selection over a number of generations, algorithm then
establishes probability distribution for model:

e given Xy = 0, fitter individuals occur when X; =0 and X; =0
e given Xy = 1, fitter individuals occur when X; =1 and X; =1
@ so probability distribution now results in generation of
schemata 000 and 111 more often than others
@ when this occurs, individuals where Xy = 0 are now on
average less fit than Xp =1
@ so 111 schema begins to dominate, and algorithm converges
on this solution
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Billion-Variable EDA

Towards Billion Bit Optimization via Efficient Genetic Algorithms
Kumara Sastry, David E Goldberg, Xavier Llora

IIGAL Report No. 2007007
[llinois Genetic Algorithms Laboratory

University of lllinois at Urbana-Champaign

Best EDA paper award at Genetic and Evolutionary Computation
Conference (GECCO) 2007



Problem - Noisy, OneMax

Representation
10° variables x; € {0,1}

Objective
Optimal solution has all x; =1 (‘OneMax")

f= ZX;-FN(O,O’Z)




Solution Method

Algorithm

Compact Genetic Algorithm (CGA) - a univariate EDA

00000 - O

0o 1 2 3 4 10°-1

000 .. 00. .00 -

0o 1 2 127|128 255|256

Processor A Processor B

A\




Extrapolation from Trajectory

For 109 variables, algorithm would take too long to converge even
on large parallel computing cluster.

Measured time for algorithm to reach point where all probabilities
were > 0.501 (from initial probability of 0.5). Extrapolated results
from small problems where full convergence was possible.

Novelty

| A

@ Real-world problem size
@ Very efficient parallel implementation of CGA

@ Although simple EDA, superior (more scalable) to other
approaches such as hill-climbing on this problem

\




@ EDAs are a modern form of evolutionary algorithm

e Wide variety of algorithms ranging from simple (e.g. CGA) to
advanced, state-of-the-art (e.g. BOA)

@ Demonstrate advantages over standard GAs on some problem
classes



Selected Resources

Survey of Bit-String EDAs

Martin Pelikan, David Goldberg and Fernando Lobo

A Survey of Optimization by Building and Using Probabilistic
Models

IIIGAL Report No. 99018, University of lllinois, 1999

Missouri Estimation of Distribution Algorithms Laboratory
http://medal.cs.umsl.edu/
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