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Abstract. A method is proposed for calibrating Catadioptric Omni-
directional Vision Systems. This method, similarly to classic camera cal-
ibration, makes use of a set of fiducial points to find the parameters of
the geometric image formation model. The method makes no particu-
lar assumption regarding the shape of the mirror or its position with
respect to the camera. Given the camera intrinsic parameters and the
mirror profile, the mirror pose is computed using the projection of the
mirror border and, eventually, the extrinsic parameters are computed by
minimizing distance between fiducial points and back-projected images.

1 Introduction

A catadioptric imaging system is built combining reflective (catoptric) and re-
fractive (dioptric) elements. They allowed building omni-directional sensors [1]
at an affordable price, which made catadioptric systems become of widespread
use also in fields like video-surveillance and teleconferencing; in contrast omni-
directional dioptric-based systems usually cost much more.

The choice of a specific mirror shape is based mainly on required resolution,
manufacturing cost, assembly cost and geometric properties. With respect to
these properties, mirror shapes can be classified in two categories: Single View-
point (SVP, also called central) imaging systems, and Non-SVP (non-central)
imaging systems [2]. In SVP mirror systems, the lines of those incoming rays,
which are reflected to the image plane, intersect at a single point, called Effective
Viewpoint (see Fig. []). It has been proved that the only useful mirror shapes
with this property are hyperboloid mirrors (coupled with a perspective camera)
and paraboloid mirrors (coupled with an orthographic camera). The uniqueness
of the viewpoint allows a mapping of every scene point on the image plane,
similarly to what happens with perspective cameras. The result of the catadiop-
tric projection is equivalent to a panoramic image taken with a camera rotating
around its viewpoint, and the resulting catadioptric image can be rectified to
obtain an omni-directional undistorted perspective image called panorama [34].
On the other hand, SVP imaging systems suffer from a number of problems.
Firstly, the SVP constraint leaves little room for changing other optical para-
meters that could be useful to tune because the relative pose of the mirror and
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Fig. 1. Comparison between a central catadioptric system (featuring an hyperbolic
mirror) and a non-central one. Note that in a all rays intersect at the hyperboloid
focus, while in b there is no unique intersection for the rays.

the camera are strictly bound. Due to the curved vertical section of the mirrors,
spatial resolution is badly distributed: typically the ground and the camera fill
the central part of the omni-directional image, leaving little room, on the periph-
eral part of the image, for the (interesting) surrounding environment. Regarding
assembly costs, cameras based on hyperboloid and paraboloid mirrors are more
expensive needing very accurate assembly, for the viewpoint to be unique.

The work on non-SVP sensors aimed at overcoming these limitations. Early
non-SVP systems were based on a spheric mirror [5] or on a conical mirror [I]
due to the low cost of such mirrors and the mathematical simplicity of the pro-
jection. In general, however, non-SVP systems pose no constraints on mirror
shape and position. Catadioptric images taken with such devices cannot be rec-
tified though, i.e., there is no function that takes a non-SVP omni-directional
image and unwraps it into a perspective image. The freedom in the mirror shape,
however, can be exploited for designing optimal mirrors for each specific appli-
cation. Examples include single-camera stereo-vision [6], multi-part mirrors [7]
and many kind of non-distorting mirrors [§].

This paper contribution is an algorithm to calibrate non-SVP systems using
the projection of the mirror border and a set of points whose scene and image
coordinates are known. By calibration we mean to estimate the mirror pose (with
respect to the camera), as well as the camera pose (with respect to a world
reference frame). We will be assuming that the camera intrinsics are known.
We will therefore call intrinsic parameters of the catadioptric system the mirror
pose; extrinsic parameters of the catadioptric system the camera pose in the
world reference frame. By knowing the calibration parameters it will be possible
to map every pixel onto its interpretation line. These lines can then be exploited
for metrology. The assumption we make is that the mirror shape is known.

Most of the scientific literature regarding catadioptric system calibration deals
with SVP systems, probably because of their availability off-the-shelf. Since SVP
systems assume that the mirror pose is known, their calibration consists of find-
ing 1) the intrinsic parameters of the mirror-and-camera pair (seen as a single
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indivisible object) and 2) the extrinsic parameters, similarly to what happens
with traditional cameras. There are even some ready-to-use calibration tools
available on the Internet, e.g. [9], [I0], [3].

The calibration of non-SVP systems, on the other hand, is a surprisingly un-
studied problem. The only exception is the particular case of non-SVP systems
featuring a conic mirror, like the COPIS [I]. In this case, if the cone axis matches
the camera optical axis, it can be proved that there is one viewpoint for each
direction the optical rays come from. The set of these viewpoints, sometimes
referred to as view-circle, allows the conic projection to be described through
relatively simple equations; it also allows to calibrate the camera intrinsic para-
meters together with the rest of the catadioptric system, like one would do with
a SVP system. In our experiments, for the sake of ease, we used a conic mirror,
but this will not necessarily be coaxial to the camera. In fact, the algorithm we
develope (see Sect. 22)) is equally fit to any mirror shape.

Strelow’s method [II] for calibrating generic catadioptric systems separates
the perspective projection from the catadioptric part and deals only with the
latter. The mirror can be of any shape as long as the surface equation is known.
The method consists of calculating the mirror position w.r.t. the camera (i.e.,
the catadioptric system intrinsic parameters) using the image of one or more
targets whose three-dimensional coordinates (w.r.t. the camera) are known, and
then minimizing the difference between the observed position on the image and
their respective predicted back-projections, where these depend on the roto-
translation describing the mirror pose. This requires solving a non-linear system
of equations. This method obtains a precision of about 1%, but it suffers from two
problems. Firstly, the calibration points coordinates must be known w.r.t. the
camera reference frame, i.e., the camera extrinsic parameters must be known
before the calibration. The second problem is tied to the intrinsic complexity
of a non-SVP projection model. In order to back-project a scene point onto the
image one has to find the line, exiting from the scene point, which, once reflected
by the mirror, passes through the camera pin-hole. To minimize the distance
between image points and back-projected scene points this method requires for
each minimization iteration, and for each point, to numerically resolve a non
linear system.

2 Our Method

In the first place, we shall start by looking at the geometric model adopted to
describe catadioptric imaging systems; we shall then examine the two phases
of our method: mirror localization and extrinsic parameters computation. In
Fig. 2 we see a schematic drawing of a typical catadioptric system. The cube
in the middle, indicated with C, represents the camera (camera reference frame
xcyczco). Note that this reference frame has a precise physical meaning, as its
origin is the center of projection. It is not defined arbitrarily, but depends on the
camera intrinsic parameters. In front of the camera there is a solid of revolution
(SOR) mirror. Solids of revolution feature an azis of symmetry and a profile. We
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Fig. 2. Geometric model of a catadioptric imaging system

can define a reference frame local to the mirror whose z-axis corresponds to the
SOR axis and whose origin lies in the center of the mirror base (mirror reference
frame xpryarzar). The mirror is in a generic position with respect to the camera:
its axis is not parallel to the optical axis and it does not pass through the pinhole.
The unknown roto-translation from the camera reference frame to the mirror is
Tc . we will see how to compute it in Sect. Bl In Fig. B we see a third
reference frame, xyyw zw, called world reference frame; all distances measured
by the user are defined in this frame. Its z-axis is vertical upward and the origin
is usually located in a easily recognizable point. In Sect. we will see how to
compute the roto-translation 7y ¢ and, as a consequence, the roto-translation
Tw_n- In analogy with the terminology of traditional camera calibration, we
will call the coefficients of Ty ¢ extrinsic parameters of the catadioptric system.
Because all rigid transformations are invertible, we will refer to the inverse of
the above mentioned roto-translations, i.e., 7y/—¢c, 7v—w € Tw—c, whenever
this would help readability.

2.1 Mirror Localization

The method exposed here is based on the analysis of the conic on the image
plane corresponding to the projection of a circle. The perspective projection of
a circle is an ellipse. The mirror pose can be estimated by this circle-to-ellipse
correspondence. The idea of using the projected ellipse to estimate the circle
pose is not new and it has found various applications (e.g. [I2]); an introduction
to this problem can be found in [I3]. From the observed perspective projection of
a circle with known radius, the circle support plane and the position of its center
can be inferred analytically. Let the real, symmetric, non-zero matrix @} be the
ellipse corresponding to the projection of a circle of radius r in the normalized
camera reference frame (i.e., where the camera pinhole is in the origin and the
image plane has equation z = 1). Because the matrix representation of quadrics is
unique, up to an arbitrary scale factor, we choose a scale k such that det kQ = 1.

From matrix theory, we know x = \3/ —d ! . In the rest of this section, Q will
et Q
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refer to the normalized matrix. Let A1, A2 e A3 be the eigenvalues of ), where
Az < 0 < A < Ao, and let 4y, 1 and @3 be the (orthonormal) eigenvectors
corresponding to A1, A2 and A3 respectively. The normal n to the circle support
plane is given by:

N = Ug sinf + Gs cos (1)

where sin ) = \/ t:i;’ cosf = \/ :\\;::\\2 . The distance of the support plane from

the pinhole is
d=Ar. (2)

To compute the position of the circle centre one only needs to multiply the
inverse of the ellipse with the normal to the support plane:

c=Q ' n. (3)

Note that the sign of eigenvectors ;23 are arbitrary. Since both 7 and —n
represent the same plane orientation, from () we deduce that

1. If Ay = Ag, then n = \/ M =234 therefore there exists only one solution

N
regardless of the sign of ug.
2. If Ay # Ao, then there exist two interpretations.

In the second case, both interpretations are physically plausible, but of course
only one is real. Unfortunately, a single image is not enough to solve this ambigu-
ity, therefore an implementation of this algorithm will need more information in
order to choose one of the two solutions. We will bring both hypothesis foreward
up to the solution of the extrinsic parameters step. Only at that point we will
have the ambiguity solved, by choosing the solution that gives the best estimate
(with the smallest residual). In other applications, where two concentric circles
are used, the solution can be directly disambiguated [I4]; this could be useful
for multi-part mirrors, like the one in [7].

2.2 Calibration of the Extrinsic Parameters

The extrinsic parameters are the coefficients of the transformation 7o _ .y that
converts a point coordinates from the camera reference frame xcyczo to the
world reference frame xw yw zw. To compute these parameters we take a set of
N calibration points or fiducial points whose scene coordinates (w.r.t. the world
reference frame) and image coordinates are known. If we know the camera intrin-
sic parameters we can use the fiducial points image coordinates to compute their
interpretation lines, with respect to the camera system. If we know the pose of
the mirror, with respect to the camera system, we can compute the reflected in-
terpretation lines. We also know that these lines come from their corresponding
scene points. We know the reflected interpretation lines with respect to the cam-
era system, while the fiducial points scene coordinates are known with respect
to the world system, but we do not know the transformation between the two. We
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first see how to compute the reflection onto a surface of revolution, then we use
the reflected interpretation lines for the estimation of the extrinsic parameters.

Reflection of the Interpretation Lines. If the mirror profile can be repre-
sented by a second degree equation, then the mirror shape is a quadric
(a cone, a paraboloid or a hyperboloid) and the reflected line can be deter-
mined analytically. The same holds if the profile is a splineEl of second degree
or less, as long as the reflection is computed for each segment of the spline. On
the other hand, when the profile is described by a third degree equation, the
mirror shape is represented by a sixth degree equation that cannot be solved
analytically [I5]. In this work, without loss of generality, we implemented the
reflection for quadric-shaped mirrors and we only applied it to conic mirrors. As
explained in the following section, the same theory can be applied to mirrors of
any shape using a local spline approximation of the profile.

Let Q € R*** be a symmetric, non-zero matrix representing the quadric. The
locus of points belonging to the quadric surface is given by F = T Qx = 0 where
x =z, vy, z, 1]T. Given a point p = [pmpwpz]T and a direction d = [dmdwdz]T,
(|ld|]] = 1), let @(t) = p+d -t be the parametric equation of the line passing
through p with direction cf, whose intersection with the quadric we want to
compute. By substituting the line into the quadric, grouping and rewriting as a
function of ¢ we obtain A-t?+ B-t+ C = 0 which is a second degree polynomial
in t. We solve it to find ¢y, t2 and substitute them into the line to find the
intersection points P, Ps of the line with the quadric. Only one of the two
intersections has a physical meaning, while the other is a point either behind
the camera or outside the mirror or also occluded by the mirror itself (Fig. [@h).
Once the intersection point P; is known, we compute the normal to the quadric
in P; as

OF
P; Oy

OF

. [ oF

awi

T
ol (4)
~ N T ~
and then we apply the law of reflection to the line d: 7 = 2 (ﬁTd) n—d (Fig.[).

Reflection on Mirrors of any Shape. In genral, mirrors are defined by the
points of their profile, which can therefore approximated by a linear spline. This
means that the mirror surface is a stack of conic trunks. To intersect a line with
a conic trunk, one must first intersect the line with the full cone, and then check
whether this intersection falls within the trunk. As we have a stack of trunks,
the intersection must be computed separately for each trunk. Typically, only one
intersection will survive the interval test; if more than one does, the one closest
to the origin of the ray is chosen. In Fig. @ ray r intersects all cones (m;_3), but
only the one with ms falls within the validity interval of the trunk.

L A spline is a curved line formed by two or more wvertices, or control points, and a

mathematical formula describing the curve(s) between them; if this formula is an
n-th degree polynomial, then we get an n-th degree spline.
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Fig. 3. The reflection model for the interpretation lines

Computing the Roto-translation. The reflected interpretation lines pass
through their corresponding scene points, i.e., the distance between a line and
its point is zero. We look for the roto-translation 7 _.y that zeroes the distances
between the fiducials and their reflected interpretation lines. Actually, because of
noise, the lines will only pass close to the fiducials, i.e., we can only find a roto-
translation M that minimizes the sum of the squares of the fiducial distances
to their interpretation lines. If we call p; and g;(t), (¢ = 1...N), respectively the
fiducials and the parametric equations of the reflected interpretation lines. We
look for a M that minimizes

N
J = Z lpi — Maq;(ts)| (5)

i=1

where t; is the value of the parameter ¢ that minimize the distances between
the lines g, () and the fiducials p;, for a given M. M is computed by solving a
nonlinear system of equations. The non-linearity comes from the orthonormality
constraint on the rotational part of M.

m1

m3

Fig. 4. Intersection of a line with a mirror profile approximated by a linear spline
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3 Experimental Results

In order to test the correctness of the algorithm we tried it on synthetic images,
so as to compare the results computed by our method against a ground truth.
We performed the intrinsic and extrinsic calibrations separately, to avoid errors
in the first phase to corrupt the results in the second phase. At the end of this
section, we provide a complete calibration for a COPIS system.

3.1 Intrinsic Parameters

For space limits we present only two tests, using the same conic mirror, tilted
by 6 = 0°,10° respectively. For each test we present the expected value (ground
truth, GT) and the values obtained for the mirror position (e, ¢1, ¢a respec-
tively), for the projection of the mirror centre (p, p1, p2, in pixels) and for the
normal to the support plane (72, 71 and 72, where 1 = [sin d, 0, cos H]T). We also
computed the angles ¢, ¢1, ¢o respectively formed by 7, 71 and ny with the
z-axis of the camera reference frame. We present the differences Ay = ¢ — ¢
and Ay = ¢ — ¢2 (expressed in degrees) between the expected angles and the
computed ones. This difference is a good estimate for the mirror orientation
erTor.

1. 6=0°
¢=[00100]", ¢ =[0.066 —0.146 100.003]" ¢;=[0.01 —0.312 100.003] "
]t ]t

p=[31952395]", p; = [319.681 240.703]", py = [319.521 238.499

a=1[001]", A, = [0.0010.0100.999]", s = [0.000 —0.008 0.999] "
Ay = 0.632, Ay = 0.547
1. 6=5°
¢=[00100]", ¢ = [3.492 0.097 100.22] * ¢, = [0.174 0.069 100.281] "

p=[319.5239.5]", p; = [303.092239.389]" , p, = [319.169 239.66]"

2=[0.08700.996]" , A, = [0.048 0.000 0.998] " , 7o =[0.085 0.001 0.996] *
Ay =2.222, Ay = 0.127

2. 0=10°
]T

¢=1[00100]", e; = [7.0030.092 100.029] " ¢, = [0.102 0.074 100.274
p=[31952395]", p; = [285.694 238.972]" , p, = [319.51 239.645] "

A=[0.17300.984]", 7, =[0.105 0.000 0.994] ", 71,=[0.175 0.001 0.984]
Ay =3.997, Ay = 0.067
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(a) GT image (b) Estimate
(d) Estimate (e) Reconstr. image

(g) GT image (h) Estimate

Fig. 5. Mirror not tilted (a,b,c); tilted 5° (d,e,f); tilted 10° (g,h,i)

Note how an increase in the mirror tilt improves the precision in the (correct)
pose estimate and increases also the difference between the two solutions.

3.2 Extrinsic Parameters

We generated a set of images where the world reference frame matched the
camera reference frame, in order to have a trivial ground truth. We then applied
the calibration algorithm keeping the fiducials set fixed but varying the initial
estimate. This test allowed us to verify when, and how quickly, the algorithm
converged. As a measure of the quality of the result we used (), normalized
with respect to the number N of fiducials ({x). For each test, we present the
initial estimate for rotation angle 6 (in degrees, around the world z-axis), the
initial estimate for translation 7', the goodness of the initial estimate &y (before
a solution is computed) and the goodness of the calibration {y (after a solution
is computed), and the number n of iterations performed by the algorithm. The
results are reported in Tab. [l
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3.3 Calibration of a Real COPIS System

Before the catadioptric calibration can begin, the intrinsic parameters of the
camera must be known. We used camcal [I6] to calibrate our 8mm Sony XC711,
which yielded the following intrinsic parameters matrix:

—626.438 0 317.218
K= 0 —604.007 231.424
0 0 1

The mirror base is well visible and, once the ellipse equation is extracted, the
following values are found for the normal 71 2, the centre position ¢; 2, and its
projection pi 2:

ny = [0.133 0.0059 0.991]T7 Mo = [—0.0072 —0.0265 0.999]T

1 = [6.388 -1.603123.501]", ¢, = [9.216 —0.951 123.329] "
p1 = [284.815239.268]", p, = [270.028 235.754]

Because the two solutions are so similar, we cannot solve the ambiguity yet
and so we estimate the extrinsic parameters for both. We will eventually choose
the solution with the smallest residual. The next step is the collection of fiducial
points. We are currently developing a new version of the tool, whose calibration
pattern is a checkerboard to ease fiducials collection. That not available, we
choose 40 among the most visible dots of the grid pattern (the ones in red in
Fig.[Ba). Having collected the fiducials, an initial estimate is needed to compute
the extrinsic parameters. This initial estimate consists of a rotation matrix R and
a translation vector T'. The latter can be measured by hand, while the rotation
may be input as the angle # around the world z-axis, assuming that the camera
is approximately pointed vertically upward. In this case, the initial estimate was

R=1, T=[-1105-780-20]"
which yielded the following residuals (for the two possible mirror poses): En, =
80924, &, = 2306.78. After the extrinsic parameters are computed, we get the
following results (the subscripts indicate either the first or the second pose):
]T

k=1, T = [—1105 =780 —20| ", &, = 80924

Table 1. Convergence speed and quality of the results w.r.t. the initial estimate

IO [T 0T [T e [l [l e [
BIREER BB R R R R R R

v 0 1.232 4.926 123.143 33.222 470.88 48.321 1753.97 5109.54 205.589 808.635
Ev 0 0 0 0 0 0 0 0 112.241 0 0
n 1 7 14 68 35 116 82 161 490 107 225
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Fig. 6. Calibration of a COPIS system

0.999 0.019 —0.02 —1106.29
Ry =] -0.0190.999 —0.021 | , T = | —760.09 |, &N, =699.438.
0.019 0.022 0.999 —87.88

Note how the residual of option 1 is much greater than the residual of option 2.
Also note that a solution could not be computed for option 1. This means that
the correct mirror position is option 2. The convergence graph can be seen in
Fig. [@b. Using these 40 fiducials, an AMD 2400+ can compute approximately
100 iterations per second.

A comparison with our method is unfortunately unfeasable. The only other
tool that matches ours in flexibility is Strelow’s [I1], but it is based on a different
setup and no software is available for download. All other tools are not generic
w.r.t. mirror shape or pose.

4 Conclusions

We described a mathematical model for catadioptric image formation which is
generic with respect to mirror shape and pose and to the camera optics. Then,
we introduced a calibration method that allows to estimate the model para-
meters. The experimental session proves the method to be valid and gives a
quantitative measure of the precision The main flaw of decomposing the cali-
bration process in mirror localization and extrinsic parameters estimate is that
an error in the first phase propagates to the second phase. A way to overcome
this problem is to add a third phase where a global post-optimization is per-
formed. This phase consists of solving a non-linear system where all parameters
(both intrinsic and extrinsic) are unknown, and where the results of the pre-
vious two phases are used as an initial estimate; this is what we are currently
developing.
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