
- Neural Networks Training and Overfitting-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

2

Regardless of what function we are learning, a single layer can do it …

• … but it doesn’t mean we can find the necessary weights!

• … but an exponential number of hidden units may be required

• … but it might be useless in practice if it does not generalize!

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network
with S shaped activation functions can approximate
any measurable function to any desired degree of

accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

“Entia non sunt multiplicanda praeter necessitatem”

William of Ockham (c 1285 – 1349)

3

Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of

training examples will also approximate it over unobserved examples

Too complex models
Overfit the data and do

not Generalize

Too simple models
Underfit the data ...

4

How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:

• The classifier has been learned from the very same training data,

any estimate based on that data will be optimistic

• New data will probably not be exactly the same as training data

• You can find patterns even in random data

We need to test on an independent new test set

• Someone provides you a new dataset

• Split the data and hide some of them for later evaluation

• Perform random subsampling (with replacement) of the dataset

In classification preserve class distribution, i.e., stratified sampling!

Done for training on
small datasets

5

Cross-validation Variations

Cross-validation uses training data to estimate the error on new data

• When enough data available use an hold out set and perform validation

6

Cross-validation Variations

Cross-validation uses training data to estimate the error on new data

• When enough data available use an hold out set and perform validation

• When not many data available use leave-one-out cross-validation (LOOCV)

7

Cross-validation Variations

Cross-validation uses training data to estimate the error on new data

• When enough data available use an hold out set and perform validation

• When not many data available use leave-one-out cross-validation (LOOCV)

• k-fold cross-validation is a good trade-off (sometime better than LOOCV)

 𝑒𝑘 =
1

𝑁

𝑛𝑘∈𝑁𝑘

𝐸 𝑥𝑛𝑘
|𝑤

 𝐸 =
1

𝐾

𝑘

𝐾

 𝑒𝑘

What do I do with all
these models?

8

Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average

with SGD) as the number of gradient descent iterations 𝑘, but they lose

generalization at some point ...

• Hold out some data

• Train on the training set

• Perform cross-validation

on the hold out set

• Stop train when validation

error increases

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆(𝑥|𝑤)

Online estimate of the
generalization error

9

Cross-validation and Hyperparameters Tuninig

Model selection and evaluation happens at different levels:

• Parameters level, i.e, when we learn the weights 𝑤 for a neural network

• Hyperparameters level, i.e., when we chose the number of layers 𝐿 or

the number of hidden neurons 𝐽(𝑙) or a give layer

• Meta-learning, i.e., we learn from data a model to chose hyperparameters

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆
𝐽(1)

(𝑥|𝑤)

Generalization error
with J neurons in 1 layer

𝐸(𝑥|𝑤)

𝐽(1)1

𝐸𝐸𝑆
1 (𝑥|𝑤)

2

𝐸𝐸𝑆
2 (𝑥|𝑤)

... 5

𝐸𝐸𝑆
5 (𝑥|𝑤)

9...

Chose model with
best validation error

10

Weight Decay: Limiting Overfitting by Weights Regularization

Regularization is about constraining the model «freedom», based on a-

priori assumption on the model, to reduce overfitting.

So far we have maximized the data likelihood:

We can reduce model «freedom» by using a Bayesian approach:

Small weights observed to improve generalization of neural networks:

Make assumption
on parameters

(a-priori) distribution

𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃(𝐷|𝑤)

𝑤𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 ⋅ 𝑃(𝑤)

Maximum
A-Posteriori

Maximum
Likelihood

𝑃 𝑤 ∼ 𝑁 0, 𝜎𝑤
2

11

Weight Decay: Limiting Overfitting by Weights Regularization

 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤|𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 𝑃 𝑤

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2

𝑞=1

𝑄
1

2𝜋𝜎𝑤

𝑒
−

𝑤𝑞
2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤

𝑛=1

𝑁
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2

2𝜎2
+

𝑞=1

𝑄
𝑤𝑞

2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾

𝑞=1

𝑄

𝑤𝑞
2

Fitting Regularization

Here it comes
another loss
function!!!

12

Recall Cross-validation and Hyperparameters Tuninig

You can use cross-validaton to select the proper 𝛾:

• Split data in training and validation sets

• Minimize for different values of 𝛾

• Evaluate the model

• Chose the 𝛾∗ with the best validation error

• Put back all data together and minimize

𝐸(𝑥|𝑤)

𝛾0.1

𝐸0.1
𝑉𝐴𝐿

1

𝐸1
𝑉𝐴𝐿

... 5

𝐸5
𝑉𝐴𝐿

100...

Chose 𝛾∗ = 5 with
best validation error

𝐸𝛾
𝑇𝑅𝐴𝐼𝑁 =

𝑛=1

𝑁𝑇𝑅𝐴𝐼𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾∗ =

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾∗

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾
𝑉𝐴𝐿 =

𝑛=1

𝑁𝑉𝐴𝐿

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

13

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent

feature preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙)

14

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent

feature preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙)

15

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent

feature preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙)

16

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent

feature preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙)

17

Dropout: Limiting Overfitting by Stochastic Regularization

Dropout trains weaker classifiers, on different mini- batches and then at

test time we implicitly average the responses of all ensemble members.

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 Behaves as an
ensemble method

18

Dropout: Limiting Overfitting by Stochastic Regularization

Dropout trains weaker classifiers, on different mini- batches and then at

test time we implicitly average the responses of all ensemble members.

At testing time we remove masks and average output (by weight scaling)

x
1

xI

xi

…

…

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … …

…

1 1

𝑔𝐾 𝑥 w

1 Behaves as an
ensemble method

- Tips and Tricks in Neural Networks Training -

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

20

Saturation

Zero Gradient

Better Activation Functions

Activation functions such as Sigmoid or Tanh saturate

• Gradient is close to zero

• Backprop. requires gradient multiplications

• Gradient faraway from the output vanishes

• Learning in deep networks does not happen

This is a well known problem in Recurrent Neural Networks, but it affects

also deep networks, and it has always hindered neural network training ...

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

21

The ReLU activation function has been introduced

It has several advantages:

• Faster SGD Convergence (6x w.r.t sigmoid/tanh)

• Sparse activation (only part of hidden units are activated)

• Efficient gradient propagation (no vanishing or exploding gradient problems),

and Efficient computation (just thresholding at zero)

• Scale-invariant:

Rectified Linear Unit

21

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

max 0, 𝑎𝑥 = 𝑎 max 0, 𝑥

22

The ReLU activation function has been introduced

It has potential sisadvantages:

• Non-differentiable at zero: however it is differentiable anywhere else

• Non-zero centered output

• Unbounded: Could potentially blow up

• Dying Neurons: ReLU neurons can sometimes be pushed into states in which

they become inactive for essentially all inputs. No gradients flow backward

through the neuron, and so the neuron becomes stuck and "dies".

Rectified Linear Unit

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

Decreased model
capacity, it happens with

high learning rates

23

Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

ELU: try to make the mean activations closer to zero

which speeds up learning. Alpha is tuned by handby hand

24

Weights Initialization

The final result of gradient descent is affected by weight initialization:

• Zeros: it does not work! All gradient would be zero, no learning will happen

• Big Numbers: bad idea, if unlucky might take very long to converge

• 𝑤 ∼ 𝑁 0, 𝜎2 = 0.01 : good for small networks, but it might be a problem for

deeper neural networks

In deep networks:

• If weights start too small, then gradient shrinks as it passes through each layer

• If the weights in a network start too large, then gradient grows as it passes

through each layer until it’s too massive to be useful

Some proposal to solve this Xavier initialization or He initialization …

25

Xavier Initialization

Suppose we have an input 𝑥 with 𝐼 components and a linear neuron with

random weights 𝑤. Its output is

We can derive that 𝑤𝑗𝑖𝑥𝑖 is going to have variance

Now if our inputs and weights both have mean 0, that simplifies to

If we assume all 𝑤𝑖 and 𝑥𝑖 are i.i.d. we obtain

Variance of output is the variance of the input, but scaled by 𝑛𝑉𝑎𝑟(𝑤𝑖).

ℎ𝑗 = 𝑤𝑗1𝑥1 + ⋯+𝑤𝑗𝑖𝑥𝐼 + ⋯+ 𝑤𝑗𝐼 𝑥𝐼

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝐸 𝑥𝑖
2𝑉𝑎𝑟(𝑤𝑗𝑖) + 𝐸 𝑤𝑗𝑖

2
𝑉𝑎𝑟(𝑥𝑖) + 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟 ℎ𝑗 = 𝑉𝑎𝑟 𝑤𝑗1𝑥1 + ⋯ +𝑤𝑗𝑖𝑥𝐼 + ⋯ + 𝑤𝑗𝐼 𝑥𝐼 = 𝑛𝑉𝑎𝑟 𝑤𝑖 𝑉𝑎𝑟 𝑥𝑖

26

Xavier Initialization

If we want the variance of the input and the out to be the same

For this reason Xavier proposes to initialize 𝑤 ∼ 𝑁 0,
1

𝑛𝑖𝑛

Performing similar reasoning for the gradient Glorot & Bengio found

To accommodate for this and Xavier propose 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

More recently He proposed, for rectified linear units, 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛

𝑛𝑉𝑎𝑟 𝑤𝑗 = 1

𝑛𝑜𝑢𝑡𝑉𝑎𝑟 𝑤𝑗 = 1

Linear assumption
seem too much, but
in practice it works!

27

𝑤

𝐸(𝑤)

Recall about Backpropagation

Finding weighs of a Neural Network is a non linear minimization process

We iterate from a initial configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 =

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤) 2

𝑤0 𝑤1 𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

Several variations
exists beside these two

…

28

More about Gradient Descent

Nesterov Accelerated gradient: make a jump as momentum, then adjust

𝑤𝑘+1 = 𝑤𝑘 − 𝜂
𝜕𝐸 𝑤

𝜕𝑤
𝑤

𝑘+
1
2

𝑤𝑘+
1
2 = 𝑤𝑘 − 𝛼

𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

29

Adaptive Learning Rates

Neurons in each layer learn differently
• Gradient magnitudes vary across layers

• Early layers get “vanishing gradients”

• Should ideally use separate adaptive learning rates

Several algoritm proposed:
• Resilient Propagation (Rprop – Riedmiller and Braun 1993)

• Adaptive Gradient (AdaGrad – Duchi et al. 2010)

• RMSprop (SGD + Rprop – Teileman and Hinton 2012)

• AdaDelta (Zeiler et at. 2012)

• Adam (Kingma and Ba, 2012)

• …

30

Learning Rate Matters

31

Batch Normalization

Networks converge faster if the inputs have been whitened (zero mean

and unit variances) and are uncorrelated to account for covariate shift.

With NN we can have internal covariate shift so normalization could be

useful also at the level of hidden layers.

Batch normalization is a technique to cope with this:

• Leverages the fact that normalization is a differentiable

• Forces activations throughout the network to take on

a unit Gaussian at the beginning of the training

• Adds a BatchNorm layer after fully connected layers

(or convolutional layers), and before nonlinearities.

• Can be interpreted as doing preprocessing at every layer of the network, but

integrated into the network itself in a differentiable way.

Fully Connected

Batch Norm

ReLU

32

Batch Normalization

Apply a linear transformation,

to squash the range, so that the

network can decide (learn) how

much normalization needs.

Can also learn

to recover the

Identity mapping

Simple Linear operation!

So it can be back-propagated

33

Batch Normalization

In practice

• Each unit’s pre-activation is normalized (mean subtraction, stddev division)

• During training, mean and stddev is computed for each minibatch

• Backpropagation takes into account the normalization

• At test time, the global mean / stddev is used (global statistics are estimated

using running averages during the training)

Has shown to

• Improve gradient flow through the network

• Allows higher learning rates

• Reduces the strong dependence on initialization

• Acts as a form of regularization slightly reduces the need for dropout

