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Mapping with Known Poses
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Representations

Landmark-based

xb'()(

x

X
XN

XA X X 1% X

X

We'll mostly
focus on these




Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars
* A 2D Gaussian for information about occupancy
* Another 2D Gaussian for free space
Sonar sensors present several issues
* A wide sonar cone creates noisy maps
* Specular (multi-path) reflections generates unrealistic measurements

............
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Room traverse by grid map from SONAR
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2D Occupancy Grids

A simple 2D representation for maps
* Each cell is assumed independent

* Probability of a cell of being occupied
estimated using Bayes theorem

P(B|A)P(A)

PUIB) = 5B P(A) + P(BI~A)P(~A)

Maps the environment as an array of cells
* Usual cell size 5 to 50cm

* Each cells holds the probability of
the cell to be occupied

* Useful to combine different sensor scans
and different sensor modalities
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Occupancy Grid Cell Update

Let occ(i,j) mean cell C;; is occupied, we have
° Probability: P(occ(i,j)) has range [0, 1]
* Odds: o(occ(i,j)) has range [0, oo]
o(occ(i,j)) = P(occ(i,j))/P(—occ(i,)))

° Log odds: log o(occ(i,j)) has range [—oo, oo]

Obstacle

Free space

)
P 7
il

Each cell C;; holds the value log o(occ(i, j)), C;; = 0 corresponds to P(occ(i,j)) = 0.5

Cells are updated recursively by applying the Bayes theorem

* A= occ(i,)) P(B|A)P(A)
°* B = measure(i,j) BCA|B) = P(B)
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Mapping with Raw Odometry (assuming known poses)
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Scan Matching

" Correct odometry by maximizing the likelihood of pose t based on the estimates of pose
and map at time t-1.

s
y — a[t-1] A
X, = algmax {p(zt ‘ Xy M ) p(Xt ‘ut—l’ Xt—l)}
Xt
current measurement robot motion

map constructed so far

Mt Then compute the map N according to “mapping with known poses” based on the
new pose and current observations.

lterate alternating the two steps of localization and mapping ...
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Scan Matching Example
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Scan Matching

" Correct odometry by maximizing the likelihood of pose t based on the estimates of pose
and map at time t-1.

%, =argmax {p(z, | %, M) p(x, [u . %)}

Does not keep track of the
uncertainty in the process

The compute the map ! according to “mapping with known poses” based on the new
pose and current observations.

lterate alternating the two steps of localization and mapping ...

o
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Simultaneous Localization and Mapping
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Dynamic Bayesian Networks and (Full) SLAM

trajectory

Smoothing :  p(I.1,....1 | Z4.Uy)
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Dynamic Bayesian Networks and (Online) SLAM

Q Q ...

T, { T, Q pose
O Q G ® O Q
Filtering : Iy 124, U) = m P byl 1244, Uyy)

1t-1
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SLAM: Simultaneous Localization and Mapping

Full SLAM:  P(X., M| Z4,Up)
.

Simultaneous estimate

of path and map Integrals computed

one at the time

Simultaneous estimate of
most recent pose and map
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SLAM: Simultaneous Localization and Mapping

Full SLAM:  P(Xy, M| 2y, Uy )
O ——— > > N
Two famous examples!

Extended Kalman Filter (EKF) SLAM
Online SLAM: [ ° Uses a linearized Gaussian probability distribution
+ Solves the Online SLAM problem

FastSLAM
« Uses a sampled particle filter distribution model
- Solves the Full SLAM problem
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(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

2
_ X Oy Oy O
Pose estimate )
Y| |0y Oy Oy

2

Oyg Oyg Oy

Bel(x,,m,) =

The map is part of
the state

X = A\Xt—l T Btut T &
p(x¢|ug, x¢—1) = N(Apxe—1 + Beug, Ry)
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(E)KF-SLAM

Pose and map features
correlate (and

Map W|th N |andmal’kS(3+2N)-dlmenSIOna| GaUSS|an mesurements correct both)

Pose estimate

Bel(x,,m,) =

The map is part of
the state

L = Ctxt T 5’[
p(z¢|x:) = N(Cexy, Q¢)
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Bayes Filter: The Algorithm

Bel (x) =1 P(z%) [ P(x %) Bel (%) dx,

Algorithm Bayes filter( Bel(x), d ):

If d is a perceptual data item z

For all x do
Bel'(x) = P(z| x)Bel (x)

Else if d is an action data item
For all x do

then

correction

u then o
/‘ prediction

Bel'(x) =jP(x|u,x') Bel (x') dx'

Return Bel’(x)
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Kalman Filter Algorithm

Algorithm Kalman_filter(p,.,, Z .1, U, Zy):

Not much different from
standard EKF ... but the

Prediction: u, = +BuU
’l_lt Aty + B, state dimention increases!!

Te=AZ A +R

Correction: K, = itCtT (C, EtCtT +Qt)_l
My = U+ Kt(zt__Ct/ut)
2 =(1-KC,)Z
Bel(x,,m,) =
Return p, 2 ,
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Classical Solution — The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian

Blue path =true path Red path = estimated path Black path = odometry
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EKF-SLAM

Map Correlation matrix
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EKF-SLAM

Map Correlation matrix
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EKF-SLAM

Landmark positions
uncorrelated with the robot
orientation ...




Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases
monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated
[Dissanayake et al., 2001]

Are we happy about this?
* Quadratic in the number of landmarks: O(n?)
° Convergence results for the linear case
* Can diverge if nonlinearities are large!
° Have been applied successfully in large-scale environments.
° Approximations reduce the computational complexity.
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Monocular SLAM Origins ...




Monocular SLAM Origins ...

Real-Time
Camera Tracking

in Unknown Scenes




Larger size environments ...

Federated Information Sharing SLAM - Vision Only

BLUE: predicted points - CYAN: updated points - MAGENTA: predicted rays - RED: updated rays
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Beyond EKF-SLAM

EKF-SLAM works pretty well but ...
°* EKF-SLAM employs linearized models of nonlinear motion and observation
models and so inherits many caveats.

* Computational effort is demand because computation grows quadratically
with the number of landmarks.

Possible solutions
° Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]

* Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]

° Sparse extended information filters [Frese et al. 01, Thrun et al. 02]

° Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]
* Represents nonlinear process and non-Gaussian uncertainty

« Rao-Blackwellized method reduces computation  *°O our Eull SLAM
solution
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The FastSLAM Idea (Full SLAM)

In the general case we have
p(x,m|z)=P(x|z)P(m]|z)
However if we consider the full trajectory X, rather than the single pose x;

p(X,m|z)=P(X;|z)P(m| X;,z)

In FastSLAM, the trajectory X; is represented by particles X, (i) while the map is
represented by a factorization called Rao-Blackwellized Filter

. P(Xt|zt) through particles

. P(m|Xt ,zt) using an EKF P(ml X(') 7 ) H P( | X(') Zt)

map poses Iandmarks / grid cells
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FastSLAM Formulation

Decouple map of features from poses ...
° Each particle represents a robot trajectory
° Feature measurements are correlated thought the robot trajectory
° If the robot trajectory is known all of the features would be uncorrelated

° Treat each pose particle as if it is the true trajectory, processing all of the feature
measurements independently

poses map observations & movements

p(-fcl:tallzm ‘ Zl:tauo:t—l) —
p(x1:¢ | 214, u0:t—1) - PU1:m | T1:¢, 21:¢)
[ < N ),
t t

Robot path posterior Landmark positions

SLAM posterior
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Factored Posterior: Rao-Blackwellization

p(x1:4,l1:m ’ Zl:tauOZt—l)
— p(ml:t | zl:tauo:t—l) 'p(ll:m ‘ 5Ul:tazl:t)

M
= p(z14¢ ] 21:6u0—1) - ] o | 214, 21:¢)
7 i=1 O\
Robot path posterior Conditionally independent
(localization problem) landmark positions

Dimension of state space is reduced by factorization making particle filtering possible
P(Z1:4: l1m | 21045 U0i—1) =
M

p(z1: | 21:0v0:—1) - || Pl | 214, 21:4)
i=1
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FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
° Each particle is a trajectory (last pose + reference to previous)
* Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
* Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M
Landmark 1 Landmark 2 Landmark M

Parli:de X,Y, 0 Landmark 1 Landmark 2 Landmark M

Particle
#1 X! y1 9

Particle
#2 X! y1

0
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FastSLAM — Action Update

Landmark #1
Filter
Particle #1
Landmark #2
Filter
Particle #2
Particle #3
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FastSLAM — Sensor Update

Landmark #1
Filter
Particle #1
Landmark #2
Filter
Particle #2
Particle #3
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FastSLAM — Sensor Update

Particle #1 Weight = 0.8
Particle #2 Weight =0.4
Particle #3 Weight = 0.1
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FastSLAM Complexity

Update robot particles based on control u, ; O(N) ngrs Itoa;rttitége

Incorporate observation z, into Kaiman fiiters  Q(Ne<log(M)) pl‘;?g;?se

Resample particle set O(N'Iog(M)) Log time

per particle

O(N-log(l\/l)) N = Number of particles

Log time per particle M = Number of map features
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Fast-SLAM Example
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Dynamic Bayesian Networks and (Full) SLAM

trajectory

Smoothing: p(Ty.p, Ly, ooy Ly Z1.6, Uqt)
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Bayesian Networks and Maximum a Posteriori

In Full SLAM we model - Q Q
p(XlZ, U) — p(FO:tJ Ll' ) n|Z1:t»u1:t) G Q @

POPPFOL

Normalizes, it does
not depend on X
e)\® — £

trajectory

then we look for the most likely solution

XMAP = argmax p(X|Z,U)
X

This can be rewritten as

XMAP = argmax p(X,Z,U)
X
p(X|Z,U) = p(X,Z,U)/p(Z,U) map
o' Smoothing: p([y.4, Ly, oo, Ly|Z1.6) Ug:t)
Full Joint

Distribution
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian 0 @ a

network is the product of the conditionals

T » [, F------ >
p(X,Z,U) = p(To.3, L1, o, LglZ1.7,u1.7) Q 6 ’ ’
= p(I'1 [T, u)p (T, u)p(I311,, ug) Q Qa Q ea Q
p(Z,|Ty, L)p(L)p(Z;1T1, Ly)p(Ly)

P(Z3(| Fz:l L3)P()L3()P(|Z4|F2:)L4)P(L4)
p(Zs|T3, Ly)p(Zs|13, Ls)p(Ls)
S o (WG E (W
= ¢y, To, u) (T, Ty, ug ) (T3, T uz)p(Z4, T, L)) p(Z5, T4, Ly)
¢(Z3'F21L3)¢(Z4' F2'L4)¢(Z5JF3JL4)¢(Z6: F3)L5)¢(Z7' FB'L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian 0 @ a

network is the product of the conditionals

I » I, F------ >
p(X' Z: U) — p(FO:B’ Ll» ) L6|21:7,u1:7) Q 6 ’ ’

P(F1|Fo;u1]_P(F2|F1;u1jp(r‘3|r2,u31 Q ea Q ea Q
p(Z1\I, L) p(L{)p(Z, |17, L)p(Ly)

p(Z3|13, L3)p(L3)p(Z4|Ty, Ly)p(Ly)

Mk lrs . 000U O

d Iy, To, ug ) (I, Ty, ug ) (T3, I, uz)p(Zy, I, Ly )p(Z, T4, Ly)

d)(ZBt FZ) L3)¢(Z4' FZJ L4)¢(Z5, F3' L4)¢(Z6: FSJ L5)¢(Z7' F31 L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian 0 @ a

network is the product of the conditionals

T » [, F------ >

p(X» Z: U) — p(FO:B’ Ll» ) L6|21:7,u1:7) Q 6 j 3

= p(Iy Ty, u ) p( Ty, u ) p(311;, us) Q Qa Q ea Q
p(Z1111, Ly)p(Ly)p(Z; E1;L2)P(l_12)

p(Z3|15, L3 p(Z 4|1, LyyplLy,)

p(Z|T3, Le)p(Le) a QQ Q G Q

= ¢y, To, u) (T, Ty, ug ) (T3, T, uz)p(Z4, T, L)) p(Z5, T4, Ly)
d)(ZBt FZ) L3)¢(Z4' FZJ L4)¢(Z5, F3' L4)¢(Z6: FSJ L5)¢(Z7' F31 L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian 0 @ a

network is the product of the conditionals

T » [, F------ >
p(X,Z,U) = p(To.3, L1, o, LglZ1.7,u1.7) Q 6 ’ ’
= p(I'1 [T, u)p (T, u)p(I311,, ug) Q Qa Q ea Q
P(Z1|F1,L1)P(L1)P(Zz|r1;L2)P(L2)

p(ZsIT3, L3)p(L3Jp(ZalTy, Ly)p(Ls)

LGB OO0 O6




Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian 0 @ a

network is the product of the conditionals

I » I, F------ >
p(X,Z,U) = p(Ty.3,L1, ..., Lglzy.7,uq.7) Q 6 ’ ’
= p(I'1 [T, u)p (T, u)p(I311,, ug) e Qa Q ea Q
p(Z,|Ty, L)p(L)p(Z;1T1, Ly)p(Ly)
P(Z3|F2:L3)P(L3)P(Z4|F2:L4)P(L4)

p(ZS |F3) L4 !' (Z6|F3) LS)p(LS)

¢(F11 FO) ul)d)(rz; Fl) §Wal (Fg, FZ) D L(Z,Z' Fl) LZ)




Bayesian Networks and Joint Distribution

This is called
The full joint distribution of a Bayesian Factor Graph

network is the product of the conditionals

oo
I
p(X» Z: U) — p(FO:B’ Ll» ) L6|Z1:7; u1:7) ’ ° 9 G

= p(I'1 [T, u)p (T, u)p(I311,, ug)
p(Z1|Ty, L1)p(L1)p(Z;|T, Ly)p(Ly)
p(Z3|T,, L3)p(L3)p(Z4|15, Ly)p(Ly)

PsIl Lopally Loes) () () (W) (W) (0 (W
p(Z7|F3; L6)p(L6)

= ¢y, To, u) (T, Ty, ug ) (T3, T uz)p(Z4, T, L)) p(Z5, T4, Ly)
d)(ZBt FZ) L3)¢(Z4' FZJ L4)¢(Z5, F3' L4)¢(Z6: FSJ L5)¢(Z7' F31 L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian
network is the product of the conditionals

p(X» Z: U) — p(FO:31L11 ...,L6|21:7,u1:7) ’
= P(F1|Fo»u1)l9(rz|F1:u1)P(F3|F2: /
p(Z1|T, L)p(Ly))p(Z, [Ty, Ly)p
p(Z5|T,, L3)p(L3)p(Z4|Ls 4)P(L4)
p(Zs5|T3, Ly)p(Zetl3, Ls)p(Ls) G Q G Q G 0
p(Z4¥3, Lg)p (L)

=| (I, Ty, u1j‘¢(r‘2» Iy, ulﬂgb(f},, [, uz) (21, Ty, L) p(Z,, Ty, Ly)
d)(ZSt FZ) L3)¢(Z4' FZJ L4)¢(Z5, F3' L4)¢(Z6: F3, L5)¢(Z7' F31 L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian
network is the product of the conditionals

I
p(X» Z: U) — p(FO:BJ Ll! ) L6|Z1:7; u1:7) ’ ° 9 G

= p(I Ty, u ) p (T, ug ) p (T35, uz)
p(Z1|Ty, L1)p(L)p(Z, Ty, Ly)p(Ly)
p(Z3|T,, L3)p(L3)p(Z4|T, Ly)p(Ly)

p(ZSll;f{éj?lifizl)%&f:))p(@ e' Q \9 0 G 0

= ¢, T, up) (I, Ty, ug ) (I3, T, uz ) p(Z4, 1, L1)!¢(Zz» Iy, L)
d)(ZSt FZ) L3)¢(Z4' FZJ L4)¢(Z5, F3' L4)¢(Z6: F3, L5)¢(Z7' F31 L6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian
network is the product of the conditionals

p(X,Z,U) = p(To.3, L1, v, Ll Z1.7, Ug.7) b ° 9 G
= p([1|To, u)p (LT, u)p (31, us) l"'/’
R R e
it s (o () (D (0

— d)(r ) d)(r ) ¢(F31 2) 3)¢(er ) 1)¢(Z ) 11L)
d)(ZSiFZ'LS (Zélu ngl‘él- ¢(Z5JF3JL4J¢(Z6) F3)L51¢(Z71 F31L6§|
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Full SLAM as Graph Optimization

L e OnaGas®

Given the Factor Graph Full Joint Distribution

p(X,Z,U) = H¢i(Xi)
The Full SLAM problem is lrefor dlated as G Q G 0 Q Q

XMAP = gqrgmax p(X|Z, ) = argmax p(X,Z,U) = argmax ‘ ‘qbi(Xi)
X X .
l

Let's also assume to have Gaussian Factors (not mandatory but convenient)

1 1
¢ (I'y, Ty, ug) =PIy [Ty, uy) = N(g(Tp,ug), R) = 27R| " eXp (—E lg(To, uq) — F1”%2)
T

1 1
¢(Zl,I‘l,L1J = P(Zl|I‘1,L1) = N(h(I‘l,Ll),Q) = |2T[Q| - exp (_E ||h(r1;L1) _ Zl”é)
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Full SLAM as Graph Optimization

@ —~{—(r,

trihiitinn

1 1
xNN(li»Z)=m.exp<_§““_x“%> L QQG GG

e = %13 = (u = 0757~ x) argmax | | $:(x0
X i

Let's also assume to have Gaussian Factors (not mandatory but convenient)

1 1
¢ (I, To, ug) = P(Iy Ty, uy) = N(g(Tp,ug), R) = 27R| " eXp (‘E lg(To, uq) — F1”%2)
T

1 1
¢(Zl, [y, Ll) = P(Zl|F1,L1) = N(h([‘l’Ll), Q) — - exp (__ ”h(Fl:L1) _ Zl”é)
12mQ| 2
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Graph Optimization on Factor Graphs

1
$i=y;(X;) < exp (—5 19:(X;) — Fi”%(j

1 1
XMAP — argmax H(,bi(Xi) = argmax 1_[ exp | — 5 lg:(X;) — Fl-llfg) l_[exp <—§ lhi (X;) — Zi”é)
i

=u; 1=z

Measurement
factors

1
$i=z,(X;) X exp <_§ lh; (X)) — 13

If we solve for the logarithm we get a simpler optimization algorithm

XMAP — argmax l_[qb (X;) = argmax logl_[qb (X;) = argmax Zlogqb (X;)

= argmax z log exp (——Ilgl(X) [; ||R> Z log exp (——Ilh (X;) — z; IIQ>

i=u;
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Graph Optimization on Factor Graphs

XMAP — argmax ncp (X;) = argmax logl_[qb (X;) = argmax ZIqu’) (X;)

= argmax Z log exp (——Ilgl(X) [; ||R> Z log exp <——||h (X;) —z; ||Q>

i=u;

=argmax2——||gl(X) FIIR+Z——||h(X) zill§ e00

X

Multiply by -2

=u; .
then max -> min

= argmm 2 lg: (X)) —Till% + ZIIh X)) —zllg

i=u;

Non linear least
squares on a graph

Landmark - ‘? Oo ® é -

OLITECNICO MILANO 1863




Graph-SLAM

Loop Closure

Robot pose

Landmark

Non linear least
squares on a graph

' (X)) —T:|2 h: (X)) — 7:|?
arngm 19:(X:) illg + |h; (X;) Zl”Q
i=Zi

i=ui

; POLITECNICO MILANO 1863



Graph-SLAM Subleties ...

Sometimes landmarks get
«attached» to poses in
PoseGraph-SLAM

P o ‘e Robot pose

Landmark \ ’O .O\ Q é ......
‘ CiA @

Variables move
on manifolds!

Non linear least
squares on a graph

' (X)) —T:|2 h: (X)) — 7:|?
arngm 19:(X:) illg + |h; (X;) Zl”Q
i=Zi

i=ui
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Graph-SLAM Example
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What did happen to the quadratic complexity?

Solving non-linear least squares needs iterative adjustments (gradient descend)

argmm z lg:i (X)) —T;||z + ZIIh (X)) — zllg

i=u;

Let’'s focus on measurement factors, then the following extends to all factors

hi(Xi) == hl(XlO ~+ Al) =~ hl(XlO) ~+ HiAi °00

This is the usual
Taylor expansion

We look for the single adjustment step which minimizes all measurement factors

zl h, (XO))H

A* = argmm leh (X;) — z; IIQ = argmm
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What did happen to the quadratic complexity?

- )

A* = argmm ZIIh (X;) — z; IIQ = argmm

lZl l

€

We can rewrite the Mahalanobis norm as it follows turning it into quadratic

leillg = e/ Q7 te; = (Q_l/zei)T(Q_l/Zei) = ”Q_l/ze”z

07 Hii = 07 (2= mi(x0))||

A® = argmin
A

Linear least

From this we can get to
squares problem

A* = argmm ZHA A; — bill5 = argmm |AA — bl|3
OOO

Lets’ assume
Odometry is included
too from now on ...

A =0Q; 1/2Hi’ b; = Q; ( zZi — hi(XiO))

5\ POLITECNICO MILANO 1863



What did happen to the quadratic complexity?

A* = argmin E |A;A; — b;||5 = argmin ||AA — b||3
A : A
l

Let’s solve the least squares problem

|IAA — b||5 = (AA — b)T(AA — b) = ATATAA — 2ATATb + bbT

a”AAaA— b”% —0 ﬁ ATAA = ATh Matrix AT A T

Matrix A from Odometry and Measurement Jacobians
° Factors are constraints between 2 variables
* Matrix 4 is sparse and matrix AT A too
* We can use sparse methods which are fast !!! e

|

Matrix A
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1126333 A, nnz=5681

What did happen to the quadratic complexity?

oIlAa—bll5 _
oA -
Naive least squares uses pseudo inverse, however (474)"1 is 0(n3)

w) ATAA = ATb

A= (ATA)"1ATh

Matrix A
Matrix AT A

3%333 1, nnz=7331

. ...."
. g
i
Pt
i
-~ 4 [
bt
-~ 2 L
e,
e,
N,
'N.'.
o .
-
.
\'-
g . -
% . ."
3
:
5
i
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What did happen to the quadratic complexity?

oIlAa—bll5 _
oA -
Naive least squares uses pseudo inverse, however (474)"1 is 0(n3)

w) ATAA = ATb

A= (ATA)"1ATh

Cholesky decomposition ATA = RTR (R upper triangular) is O(n') to 0(n?)

333*333 R, nnz=9399 333%3331, nnz=7331

RTRA = A"h
RTy = ATb
RTA=y
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What did happen to the quadratic complexity?

oIlAa—bll5 _
oA -
Naive least squares uses pseudo inverse, however (474)"1 is 0(n3)

w) ATAA = ATb

A= (ATA)"1ATh

Cholesky decomposition ATA = RTR (R upper triangular) is O(n') to 0(n?)

NI

TA —
R°A=y Ry Ab R x vy

Solve by forward / backward substitution ...
... and via LDL" decomposition is even faster !!!

o
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What did happen to the quadratic complexity?

0114 — b||3
= 4
dA 0 =

Naive least squares uses pseudo inverse, howe

A= (ATA) 1A

Cholesky decomposition A”A = RTR (R upper tri

RTRA = ATh
RTy = ATh =
R"TA=y Ry A'b

SLA
THIS 15 YOUR H40CHRIE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLJERS ON THE CTHER SIDE.

WHAT IF THE ANSLERS ARE WRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Solve by forward / backward substitution ...

... and via LDL" decomposition is even faster !!!
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General Architecture of a Modern SLAM System

SENSORIDATA ERONI-END BACK:END
I_ ————————— =
i Monocular | Data Rough map Local
| camera ! preprocessing creation optimisation
B — 1 T —>
l Stereo , py
i camera | Data association ‘f""‘_‘ba’,
““““““ short term long term optimisation
C_ T T (tracking) (loop detection)
| Range sensor
| -
(o9 LDAR Map
@ refinement
Mapl&!Optimised|poses’ )
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Pose-Graph SLAM

GPS position
0-0O---0o-_ /,O‘~O~\(/
Loop edge A O-. O-- O - )
’ ~O- - -
/
g .
I
Q Ground edge Q\
Ground node -0

\
o O
-0°" d\) -O-0o-.
o 9 /
O

o} o
]
IMU orientation /\O§ 0-0O Q.0

Odometry edge ~Q_

~
~

0-- o-
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Pose-Graph SLAM

GPS position

Loop edge Sl

@)
1
[

Ground edge \

Ground node

.00y
O O-
__O”(P’ Q‘ \\ \O\

Q \
/> ~O- O~ - Q !
\O/
IMU orientation

Odometry edge ‘\
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