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Mapping with Known Poses



4

Representations

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…]

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

We’ll mostly 

focus on these
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Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars  

• A 2D Gaussian for information about occupancy

• Another 2D Gaussian for free space

Sonar sensors present several issues

• A wide sonar cone creates noisy maps 

• Specular (multi-path) reflections generates unrealistic measurements

Moravec 1984
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2D Occupancy Grids

A simple 2D representation for maps

• Each cell is assumed independent 

• Probability of a cell of being occupied

estimated using Bayes theorem

Maps the environment as an array of cells

• Usual cell size 5 to 50cm

• Each cells holds the probability of 

the cell to be occupied

• Useful to combine different sensor scans

and different sensor modalities

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 ~𝐴 𝑃(~𝐴)
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Occupancy Grid Cell Update

Let 𝑜𝑐𝑐(𝑖, 𝑗) mean cell 𝐶𝑖𝑗 is occupied, we have

• Probability: P(𝑜𝑐𝑐(𝑖, 𝑗)) has range [0, 1]

• Odds: o(𝑜𝑐𝑐(𝑖, 𝑗)) has range 0, ∞

• Log odds: log o(𝑜𝑐𝑐(𝑖, 𝑗)) has range [−∞, ∞] 

Each cell 𝐶𝑖𝑗 holds the value log o(𝑜𝑐𝑐(𝑖, 𝑗)), 𝐶𝑖𝑗 = 0 corresponds to P 𝑜𝑐𝑐 𝑖, 𝑗 = 0.5

Cells are updated recursively by applying the Bayes theorem

• 𝐴 = 𝑜𝑐𝑐(𝑖, 𝑗)

• 𝐵 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖, 𝑗)

o 𝑜𝑐𝑐 𝑖, 𝑗 = P(𝑜𝑐𝑐(𝑖, 𝑗))/P(¬𝑜𝑐𝑐(𝑖, 𝑗))
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Mapping with Raw Odometry (assuming known poses)
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Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose 
and map at time t-1.

Then compute the map        according to “mapping with known poses” based on the 
new pose and current observations.

Iterate alternating the two steps of localization and mapping …

 )ˆ,|( )ˆ ,|( maxargˆ
11
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Scan Matching Example
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Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose 
and map at time t-1.

The compute the map        according to “mapping with known poses” based on the new 
pose and current observations.

Iterate alternating the two steps of localization and mapping …

 )ˆ,|( )ˆ ,|( maxargˆ
11

]1[

−−

− = ttt

t

tt
x

t xuxpmxzpx
t

robot motioncurrent measurement

map constructed so far

][ˆ tm][ˆ tm

][ˆ tx

Does not keep track of the 

uncertainty in the process
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Simultaneous Localization and Mapping
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Dynamic Bayesian Networks and (Full) SLAM
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Dynamic Bayesian Networks and (Online) SLAM


−

G=G
1:1

:1:11:1:1:11 ),|,,,(),|,,,(:Filtering
t
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SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −  = ttttttt dxdxdxuzmxpuzmxp 

Simultaneous estimate 

of path and map

Simultaneous estimate of 

most recent pose and map

Integrals computed 

one at the time
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SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −  = ttttttt dxdxdxuzmxpuzmxp 

Simultaneous estimate 

of path and map

Simultaneous estimate of 

most recent pose and map

Integrals computed 

one at the time

Two famous examples!

Extended Kalman Filter (EKF) SLAM

• Uses a linearized Gaussian probability distribution

• Solves the Online SLAM problem

FastSLAM

• Uses a sampled particle filter distribution model

• Solves the Full SLAM problem
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(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian
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The map is part of 

the state

Pose estimate
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(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian
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The map is part of 

the state

Pose and map features 

correlate (and 

mesurements correct both)

Pose estimate
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Bayes Filter: The Algorithm 

Algorithm Bayes_filter( Bel(x), d ):

If d is a perceptual data item z then

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

111 )(),|()|()( −−−= tttttttt dxxBelxuxPxzPxBel 

prediction

correction
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Kalman Filter Algorithm 

Algorithm Kalman_filter(µt-1, Σ t-1, ut, zt):

Prediction:

Correction:

Return µt, Σ t `
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Not much different from 

standard EKF ... but the 

state dimention increases!!
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Classical Solution – The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian 

Blue path = true path   Red path = estimated path   Black path = odometry
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix

Landmark positions 

uncorrelated with the robot 

orientation ...
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Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases 

monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated

Are we happy about this?

• Quadratic in the number of landmarks: O(n2) 

• Convergence results for the linear case 

• Can diverge if nonlinearities are large!

• Have been applied successfully in large-scale environments.

• Approximations reduce the computational complexity. 

[Dissanayake et al., 2001]



28

Monocular SLAM Origins …
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Monocular SLAM Origins …
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Larger size environments …
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Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

• EKF-SLAM employs linearized models of nonlinear motion and observation 

models and so inherits many caveats.

• Computational effort is demand because computation grows quadratically

with the number of landmarks. 

Possible solutions

• Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]

• Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters [Frese et al. 01, Thrun et al. 02]

• Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]

• Represents nonlinear process and non-Gaussian uncertainty

• Rao-Blackwellized method reduces computation Our Full SLAM 

solution
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The FastSLAM Idea (Full SLAM)

In the general case we have

However if we consider the full  trajectory 𝑋𝑡 rather than the single pose 𝑥𝑡

In FastSLAM, the trajectory 𝑋𝑡 is represented by particles 𝑋𝑡(𝑖) while the map is 

represented by a factorization called Rao-Blackwellized Filter

• through particles

• using an EKF

( , | ) ( | ) ( | )t t t t tp x m z P x z P m z

( , | ) ( | ) ( | , )t t t t t tp X m z P X z P m X z=

( ) ( )( | , ) ( | , )
M

i i

t t j t t

j

P m X z P m X z=𝑃(𝑚|𝑋𝑡
(𝑖)

, 𝑧𝑡)

𝑃(𝑋𝑡|𝑧𝑡)

posesmap landmarks / grid cells
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FastSLAM Formulation

Decouple map of features from poses ...

• Each particle represents a robot trajectory

• Feature measurements are correlated thought the robot trajectory

• If the robot trajectory is known all of the features would be uncorrelated

• Treat each pose particle as if it is the true trajectory, processing all of the feature 

measurements independently

SLAM posterior
Robot path posterior Landmark positions

poses map observations & movements
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Factored Posterior: Rao-Blackwellization

Dimension of state space is reduced by factorization making particle filtering possible

Robot path posterior 

(localization problem)
Conditionally independent 

landmark positions
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Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#2

Particle

N

…

FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

• Each particle is a trajectory (last pose + reference to previous) 

• Each landmark is represented by a 2x2  Extended Kalman Filter (EKF)

• Each particle therefore has to maintain M EKFs
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  Complexity

Update robot particles based on control ut-1

Incorporate observation zt into Kalman filters

Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M))
Log time per particle
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Fast-SLAM Example
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Dynamic Bayesian Networks and (Full) SLAM

L1

G1

z1

G2

u2

Smoothing: 𝑝(Γ1:𝑡, 𝐿1, … , 𝐿𝑁|𝑍1:𝑡 , 𝑈1:𝑡)

map

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

trajectory

Full SLAM
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Bayesian Networks and Maximum a Posteriori

In Full SLAM we model

then we look for the most likely solution

This can be rewritten as

L1

G1

z1

G2

u2

Smoothing: 𝑝(Γ1:𝑡, 𝐿1, … , 𝐿𝑁|𝑍1:𝑡 , 𝑈1:𝑡)
map

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

trajectory

𝑝 𝑋 𝑍, 𝑈 = 𝑝(Γ0:𝑡 , 𝐿1, … , 𝐿𝑛|𝑧1:𝑡 , 𝑢1:𝑡)

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝 𝑋 𝑍, 𝑈

𝑝 𝑋 𝑍, 𝑈 = 𝑝(𝑋, 𝑍, 𝑈)/𝑝(𝑍, 𝑈)

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝(𝑋, 𝑍, 𝑈)

𝑋 = Γ0:𝑡, 𝐿1, … , 𝐿𝑛

Full Joint 

Distribution

Normalizes, it does 

not depend on X
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1

z1

G2

u2

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

G0

u1

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1

z1

G2

u2

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

u1

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7



45

Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1

z1

G2

u2

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

u1

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1

z1

G2

u2

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

u1

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1

z1

G2

u2

z2

L2 L3

z3 z4

L4

G3

u3

L5

z6 z7

L6

z5

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

u1

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7

This is called 

Factor Graph
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7



50

Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7
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Bayesian Networks and Joint Distribution

The full joint distribution of a Bayesian

network is the product of the conditionals

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

= 𝑝 Γ1 Γ0, 𝑢1 𝑝 Γ2 Γ1, 𝑢1 𝑝 Γ3 Γ2, 𝑢3

𝑝 𝑍1 Γ1, 𝐿1 𝑝 𝐿1 𝑝 𝑍2 Γ1, 𝐿2 𝑝(𝐿2)
𝑝 𝑍3 Γ2, 𝐿3 𝑝 𝐿3 𝑝 𝑍4 Γ2, 𝐿4 𝑝 𝐿4

𝑝 𝑍5 Γ3, 𝐿4 𝑝 𝑍6 Γ3, 𝐿5 𝑝(𝐿5)
𝑝 𝑍7 Γ3, 𝐿6 𝑝(𝐿6)

= 𝜙 Γ1, Γ0, 𝑢1 𝜙 Γ2, Γ1, 𝑢1 𝜙 Γ3, Γ2, 𝑢3 𝜙 𝑍1, Γ1, 𝐿1 𝜙 𝑍2, Γ1, 𝐿2

𝜙 𝑍3, Γ2, 𝐿3 𝜙 𝑍4, Γ2, 𝐿4 𝜙 𝑍5, Γ3, 𝐿4 𝜙 𝑍6, Γ3, 𝐿5 𝜙(𝑍7, Γ3, 𝐿6)

𝑝 𝑋, 𝑍, 𝑈 = 𝑝 Γ0:3, 𝐿1, … , 𝐿6 𝑧1:7, 𝑢1:7
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Full SLAM as Graph Optimization

Given the Factor Graph Full Joint Distribution

The Full SLAM problem is reformulated as

Let’s also assume to have Gaussian Factors (not mandatory but convenient)

𝑝 𝑋, 𝑍, 𝑈 = ෑ

𝑖

𝜙𝑖 𝑋𝑖

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝 𝑋 𝑍, 𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝 𝑋, 𝑍, 𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖

𝜙𝑖 𝑋𝑖

𝜙 Γ1, Γ0, 𝑢1 = 𝑃 Γ1 Γ0, 𝑢1 = 𝑁 𝑔 Γ0, 𝑢1 , 𝑅 =
1

2𝜋𝑅
⋅ exp −

1

2
𝑔 Γ0, 𝑢1 − Γ1 𝑅

2

𝜙 𝑍1, Γ1, 𝐿1 = 𝑃 𝑍1|Γ1, 𝐿1 = 𝑁 ℎ(Γ1, 𝐿1), 𝑄 =
1

2𝜋𝑄
⋅ exp −

1

2
ℎ Γ1, 𝐿1 − 𝑍1 𝑄

2
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Full SLAM as Graph Optimization

Given the Factor Graph Full Joint Distribution

The Full SLAM problem is reformulated as

Let’s also assume to have Gaussian Factors (not mandatory but convenient)

𝑝 𝑋, 𝑍, 𝑈 = ෑ

𝑖

𝜙 𝑋𝑖

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝 𝑋 𝑍, 𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

𝑝 𝑋, 𝑍, 𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖

𝜙𝑖 𝑋𝑖

𝜙 Γ1, Γ0, 𝑢1 = 𝑃 Γ1 Γ0, 𝑢1 = 𝑁 𝑔 Γ0, 𝑢1 , 𝑅 =
1

2𝜋𝑅
⋅ exp −

1

2
𝑔 Γ0, 𝑢1 − Γ1 𝑅

2

𝜙 𝑍1, Γ1, 𝐿1 = 𝑃 𝑍1|Γ1, 𝐿1 = 𝑁 ℎ(Γ1, 𝐿1), 𝑄 =
1

2𝜋𝑄
⋅ exp −

1

2
ℎ Γ1, 𝐿1 − 𝑍1 𝑄

2

𝑥 ∼ 𝑁 𝜇, Σ =
1

2𝜋Σ
⋅ exp −

1

2
𝜇 − 𝑥 Σ

2

𝜇 − 𝑥 Σ
2 ≡ 𝜇 − 𝑥 𝑇Σ−1(𝜇 − 𝑥)
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Graph Optimization on Factor Graphs

The (Gaussian) Full SLAM problem becomes

If we solve for the logarithm we get a simpler optimization algorithm

L1

G1 G2

L2 L3 L4

G3

L5 L6

G0

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖

𝜙𝑖 𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖=𝑢𝑖

exp −
1

2
𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅

2 ෑ

𝑖=𝑧𝑖

exp −
1

2
ℎ𝑖 𝑋𝑖 − 𝑧𝑖 𝑄

2

𝜙𝑖=𝑢𝑖
𝑋𝑖 ∝ exp −

1

2
𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅

2

𝜙𝑖=𝑧𝑖
𝑋𝑖 ∝ exp −

1

2
ℎ𝑖 𝑋𝑖 − z𝑖 𝑄

2

Odometry 

factors

Measurement 

factors

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖

𝜙𝑖 𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

log ෑ

𝑖

𝜙𝑖 𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

෍

𝑖

log 𝜙𝑖 𝑋𝑖

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

෍

𝑖=𝑢𝑖

log exp −
1

2
𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅

2 + ෍

𝑖=𝑧𝑖

log exp −
1

2
ℎ𝑖 𝑋𝑖 − z𝑖 𝑄

2
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Graph Optimization on Factor Graphs

𝑋𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

ෑ

𝑖

𝜙𝑖 𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

log ෑ

𝑖

𝜙𝑖 𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

෍

𝑖

log 𝜙𝑖 𝑋𝑖

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

෍

𝑖=𝑢𝑖

log exp −
1

2
𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅

2 + ෍

𝑖=𝑧𝑖

log exp −
1

2
ℎ𝑖 𝑋𝑖 − z𝑖 𝑄

2

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋

෍

𝑖=𝑢𝑖

−
1

2
𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅

2 + ෍

𝑖=𝑧𝑖

−
1

2
ℎ𝑖 𝑋𝑖 − z𝑖 𝑄

2

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

෍

𝑖=𝑢𝑖

𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅
2 + ෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2

Multiply by -2 

then max -> min

Non linear least 

squares on a graph 

Landmark

Robot pose
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Graph-SLAM

𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

෍

𝑖=𝑢𝑖

𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅
2 + ෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2

Landmark

Robot pose

Loop Closure

Non linear least 

squares on a graph 
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Graph-SLAM Subleties …

𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

෍

𝑖=𝑢𝑖

𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅
2 + ෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2

Landmark

Robot pose

Variables move 

on manifolds!

Sometimes landmarks get 

«attached» to poses in 

PoseGraph-SLAM

Non linear least 

squares on a graph 
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Graph-SLAM Example
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What did happen to the quadratic complexity?

Solving non-linear least squares needs iterative adjustments (gradient descend)

Let’s focus on measurement factors, then the following extends to all factors

We look for the single adjustment step which minimizes all measurement factors

𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

෍

𝑖=𝑢𝑖

𝑔𝑖 𝑋𝑖 − Γ𝑖 𝑅
2 + ෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2

ℎ𝑖 𝑋𝑖 = ℎ𝑖 𝑋𝑖
0 + Δ𝑖 ≈ ℎ𝑖 𝑋𝑖

0 + 𝐻𝑖Δ𝑖

Δ𝑖 ≡ 𝑋𝑖 − 𝑋𝑖
0,   𝐻𝑖 ≡

𝜕ℎ𝑖 𝑋𝑖

𝜕𝑋𝑖
|𝑋𝑖

0

This is the usual 

Taylor expansion

Δ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
Δ

෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2 = 𝑎𝑟𝑔𝑚𝑖𝑛

Δ
෍

𝑖=𝑧𝑖

𝐻𝑖Δ𝑖 − 𝑧𝑖 − ℎ𝑖 𝑋𝑖
0

𝑄

2
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What did happen to the quadratic complexity?

We can rewrite the Mahalanobis norm as it follows turning it into quadratic

From this we can get to 

𝑒𝑖 𝑄
2 ≡ 𝑒𝑖

𝑇𝑄−1𝑒𝑖 = 𝑄−1/2𝑒𝑖
𝑇

𝑄−1/2𝑒𝑖 = 𝑄−1/2𝑒
2

2

𝑒𝑖

Δ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
Δ

෍

𝑖=𝑧𝑖

𝑄𝑖
−1/2

𝐻𝑖Δ𝑖 − 𝑄𝑖
−1/2

𝑧𝑖 − ℎ𝑖 𝑋𝑖
0

2

2

𝐴𝑖 = 𝑄𝑖
−1/2

𝐻𝑖,    𝑏𝑖 = 𝑄𝑖
−1 𝑧𝑖 − ℎ𝑖 𝑋𝑖

0

Δ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
Δ

෍

𝑖

𝐴𝑖Δ𝑖 − 𝑏𝑖 2
2 = 𝑎𝑟𝑔𝑚𝑖𝑛

Δ
𝐴Δ − 𝑏 2

2

Δ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
Δ

෍

𝑖=𝑧𝑖

ℎ𝑖 𝑋𝑖 − z𝑖 𝑄
2 = 𝑎𝑟𝑔𝑚𝑖𝑛

Δ
෍

𝑖=𝑧𝑖

𝐻𝑖Δ𝑖 − 𝑧𝑖 − ℎ𝑖 𝑋𝑖
0

𝑄

2

Lets’ assume 

Odometry is included 

too from now on ...

Linear least 

squares problem
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What did happen to the quadratic complexity?

Δ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
Δ

෍

𝑖

𝐴𝑖Δ𝑖 − 𝑏𝑖 2
2 = 𝑎𝑟𝑔𝑚𝑖𝑛

Δ
𝐴Δ − 𝑏 2

2

Let’s solve the least squares problem

Matrix 𝐴 from Odometry and Measurement Jacobians

• Factors are constraints between 2 variables

• Matrix 𝐴 is sparse and matrix 𝐴𝑇𝐴 too

• We can use sparse methods which are fast !!!

𝐴Δ − 𝑏 2
2 = 𝐴Δ − 𝑏 𝑇 𝐴Δ − 𝑏 = ΔT𝐴T𝐴Δ − 2ΔT𝐴𝑇𝑏 + 𝑏𝑏𝑇

𝜕 𝐴Δ − 𝑏 2
2

𝜕Δ
= 0 𝐴𝑇𝐴Δ = 𝐴𝑇𝑏

Matrix 𝐴
Matrix 𝐴𝑇𝐴
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What did happen to the quadratic complexity?

Naïve least squares uses pseudo inverse, however 𝐴𝑇𝐴 −1 is O(n3)

𝜕 𝐴Δ − 𝑏 2
2

𝜕Δ
= 0 𝐴𝑇𝐴Δ = 𝐴𝑇𝑏

Matrix 𝐴
Matrix 𝐴𝑇𝐴

Δ = 𝐴𝑇𝐴 −1𝐴𝑇𝑏
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What did happen to the quadratic complexity?

Naïve least squares uses pseudo inverse, however 𝐴𝑇𝐴 −1 is O(n3)

Cholesky decomposition 𝐴𝑇𝐴 = 𝑅𝑇𝑅 (𝑅 upper triangular) is O(n1.5) to O(n2)

𝜕 𝐴Δ − 𝑏 2
2

𝜕Δ
= 0 𝐴𝑇𝐴Δ = 𝐴𝑇𝑏

Δ = 𝐴𝑇𝐴 −1𝐴𝑇𝑏

𝑅𝑇𝑅Δ = 𝐴𝑇𝑏

𝑅𝑇𝑦 = 𝐴𝑇𝑏

𝑅𝑇Δ = 𝑦
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What did happen to the quadratic complexity?

Naïve least squares uses pseudo inverse, however 𝐴𝑇𝐴 −1 is O(n3)

Cholesky decomposition 𝐴𝑇𝐴 = 𝑅𝑇𝑅 (𝑅 upper triangular) is O(n1.5) to O(n2)

Solve by forward / backward substitution …

… and via 𝐿𝐷𝐿𝑇 decomposition is even faster !!!

𝜕 𝐴Δ − 𝑏 2
2

𝜕Δ
= 0 𝐴𝑇𝐴Δ = 𝐴𝑇𝑏

Δ = 𝐴𝑇𝐴 −1𝐴𝑇𝑏

𝑅𝑇𝑅Δ = 𝐴𝑇𝑏

𝑅𝑇𝑦 = 𝐴𝑇𝑏

𝑅𝑇Δ = 𝑦
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What did happen to the quadratic complexity?

Naïve least squares uses pseudo inverse, however 𝐴𝑇𝐴 −1 is O(n3)

Cholesky decomposition 𝐴𝑇𝐴 = 𝑅𝑇𝑅 (𝑅 upper triangular) is O(n1.5) to O(n2)

Solve by forward / backward substitution …

… and via 𝐿𝐷𝐿𝑇 decomposition is even faster !!!

𝜕 𝐴Δ − 𝑏 2
2

𝜕Δ
= 0 𝐴𝑇𝐴Δ = 𝐴𝑇𝑏

Δ = 𝐴𝑇𝐴 −1𝐴𝑇𝑏

𝑅𝑇𝑅Δ = 𝐴𝑇𝑏

𝑅𝑇𝑦 = 𝐴𝑇𝑏

𝑅𝑇Δ = 𝑦

SLAM
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General Architecture of a Modern SLAM System
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Pose-Graph SLAM

Ground node

Keyframe node

Odometry edge

Loop edge

Ground edge

IMU orientation

GPS position
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Pose-Graph SLAM

Ground node

Keyframe node

Odometry edge

Loop edge

Ground edge

IMU orientation

GPS position


	Slide 1: Robotics    Matteo Matteucci matteo.matteucci@polimi.it  Artificial Intelligence and Robotics Lab - Politecnico di Milano
	Slide 2: A Simplified Sense-Plan-Act Architecture
	Slide 3: Mapping with Known Poses
	Slide 4: Representations
	Slide 5: Occupancy from Sonar Return (the origins)
	Slide 6: 2D Occupancy Grids
	Slide 7: Occupancy Grid Cell Update
	Slide 10: Mapping with Raw Odometry (assuming known poses)
	Slide 11: Scan Matching
	Slide 12: Scan Matching Example
	Slide 13: Scan Matching
	Slide 14: Simultaneous Localization and Mapping
	Slide 15: Dynamic Bayesian Networks and (Full) SLAM
	Slide 16: Dynamic Bayesian Networks and (Online) SLAM
	Slide 17: SLAM: Simultaneous Localization and Mapping
	Slide 18: SLAM: Simultaneous Localization and Mapping
	Slide 19: (E)KF-SLAM
	Slide 20: (E)KF-SLAM
	Slide 21: Bayes Filter: The Algorithm 
	Slide 22: Kalman Filter Algorithm 
	Slide 23: Classical Solution – The EKF
	Slide 24: EKF-SLAM
	Slide 25: EKF-SLAM
	Slide 26: EKF-SLAM
	Slide 27: Properties of KF-SLAM (Linear Case)
	Slide 28: Monocular SLAM Origins …
	Slide 29: Monocular SLAM Origins …
	Slide 30: Larger size environments …
	Slide 31: Beyond EKF-SLAM
	Slide 32: The FastSLAM Idea (Full SLAM)
	Slide 33: FastSLAM Formulation
	Slide 34: Factored Posterior: Rao-Blackwellization
	Slide 35: FastSLAM in Practice
	Slide 36: FastSLAM – Action Update
	Slide 37: FastSLAM – Sensor Update
	Slide 38: FastSLAM – Sensor Update
	Slide 39: FastSLAM  Complexity
	Slide 40: Fast-SLAM Example
	Slide 41: Dynamic Bayesian Networks and (Full) SLAM
	Slide 42: Bayesian Networks and Maximum a Posteriori
	Slide 43: Bayesian Networks and Joint Distribution
	Slide 44: Bayesian Networks and Joint Distribution
	Slide 45: Bayesian Networks and Joint Distribution
	Slide 46: Bayesian Networks and Joint Distribution
	Slide 47: Bayesian Networks and Joint Distribution
	Slide 48: Bayesian Networks and Joint Distribution
	Slide 49: Bayesian Networks and Joint Distribution
	Slide 50: Bayesian Networks and Joint Distribution
	Slide 51: Bayesian Networks and Joint Distribution
	Slide 52: Full SLAM as Graph Optimization
	Slide 53: Full SLAM as Graph Optimization
	Slide 54: Graph Optimization on Factor Graphs
	Slide 55: Graph Optimization on Factor Graphs
	Slide 56: Graph-SLAM
	Slide 57: Graph-SLAM Subleties …
	Slide 58: Graph-SLAM Example
	Slide 59: What did happen to the quadratic complexity?
	Slide 60: What did happen to the quadratic complexity?
	Slide 61: What did happen to the quadratic complexity?
	Slide 62: What did happen to the quadratic complexity?
	Slide 63: What did happen to the quadratic complexity?
	Slide 64: What did happen to the quadratic complexity?
	Slide 65: What did happen to the quadratic complexity?
	Slide 66: General Architecture of a Modern SLAM System
	Slide 67: Pose-Graph SLAM
	Slide 68: Pose-Graph SLAM

