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Regardless of what function we are learning; a single layer can do it …

• … but it doesn’t mean we can find the necessary weights!

• … but an exponential number of hidden units may be required

• … but it might be useless in practice if it does not generalize!

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network 
with S shaped activation functions can approximate 
any measurable function to any desired degree of 

accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

“Entia non sunt multiplicanda praeter necessitatem”

William of Ockham (c 1285 – 1349)
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Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of 

training examples will also approximate it over unobserved examples

Too complex models 
Overfit the data and do 

not Generalize

Too simple models 
Underfit the data ...
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How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:  

• The classifier has been learned from the very same training data, 

any estimate based on that data will be optimistic

• New data will probably not be exactly the same as training data

• You can find patterns even in random data

We need to test on an independent new test set

• Someone provides you a new dataset

• Split the data and hide some of them for later evaluation

• Perform random subsampling (with replacement) of the dataset 

In classification preserve class distribution, i.e., stratified sampling!

Done for training on 
small datasets
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Clearing the terms …

• Training dataset: the available data

• Training set: the data used to learn model parameters

• Test set: the data used to perform final model assessment

• Validation set: the data used to perform model selection

• Training data: used to train the model (fitting + selection)

• Validation data: used to assess the model quality (selection + assessment) 

Training 
Dataset

Training set

Validation set

Test set

Training data

Test data

Model 
Development

Pre-production

Design

Engineering
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Cross-Validation

Cross-validation is the use of the training dataset to both train the model 

(parameter fitting + model selection) and estimate its error on new data

• When lots of data are available use a Hold Out set and perform validation

Training 
Dataset

Training data

Test data

Hold out error might 
be biased by the 

specific split!

Test sample
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Cross-Validation

Cross-validation is the use of the training dataset to both train the model 

(parameter fitting + model selection) and estimate its error on new data

• When lots of data are available use a Hold Out set and perform validation

• When having few data available use Leave-One-Out Cross-Validation (LOOCV)

Training 
Dataset

Training data Training data

Training data

Training data

1 2 n N

… …

Test sample

Test sample

Test sampleUnbiased but unfeasible 
with lots of data

Training data
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Cross-Validation

Cross-validation is the use of the training dataset to both train the model 

(parameter fitting + model selection) and estimate its error on new data

• When lots of data are available use a Hold Out set and perform validation

• When having few data available use Leave-One-Out Cross-Validation (LOOCV)

• K-fold Cross-Validation is a good trade-off (sometime better than LOOCV)

Training 
Dataset

Training data

Test data

Training data

Training data

Test data

Training data

Training data

Test data

Training data

Training data

Training data

Test data

Test data

1 2 3 4 5

1

2

3

4

5
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Cross-Validation

Cross-validation is the use of the training dataset to both train the model 

(parameter fitting + model selection) and estimate its error on new data

• When lots of data are available use a Hold Out set and perform validation

• When having few data available use Leave-One-Out Cross-Validation (LOOCV)

• K-fold Cross-Validation is a good trade-off (sometime better than LOOCV)

Training 
Dataset

Training data

Test data

Training data

Training data

Test data

Training data

Training data

Test data

Training data

Training data

Training data

Test data

Test data

1 2 3 4 5

1

2

3

4

5
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𝑘

𝐾

Ƹ𝑒𝑘

What do I do with all 
these models?
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Clearing the terms …

• Training dataset: the available data

• Training set: the data used to learn model parameters

• Test set: the data used to perform final model assessment

• Validation set: the data used to perform model selection

• Training data: used to train the model (fitting + selection)

• Validation data: used to assess the model quality (selection + assessment) 

Training 
Dataset

Training set

Validation set

Test set

Training data

Test data

Model 
Development

Pre-production

Design

Engineering

We can apply K-fold Cross-
Validation at this level for 

model assessment …

… and here for model selection 
(hyperparameter tuning)

Beware the number of 
models you get and how 

much it cost to train!
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Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average 

with SGD) as the number of gradient descent iterations 𝑘, but they lose 

generalization at some point ...

• Hold out some data

• Train on the training set

• Perform cross-validation

on the hold out set

• Stop train when validation

error increases

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆(𝑥|𝑤)

Online estimate of the 
generalization error



13

Cross-validation and Hyperparameters Tuning 

Model selection and evaluation happens at different levels:

• Parameters level, i.e, when we learn the weights 𝑤 for a neural network

• Hyperparameters level, i.e., when we chose the number of layers 𝐿 or

the number of hidden neurons 𝐽(𝑙) for a given layer

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆
𝐽(1)(𝑥|𝑤)

Generalization error 
with J neurons in 1 layer

𝐸(𝑥|𝑤)

𝐽(1)1

𝐸𝐸𝑆
1 (𝑥|𝑤)

2

𝐸𝐸𝑆
2 (𝑥|𝑤)

... 5

𝐸𝐸𝑆
5 (𝑥|𝑤)

9...

Chose model with 
best validation error
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Weight Decay: Limiting Overfitting by Weights Regularization

Regularization is about constraining the model «freedom», based on a-

priori assumption on the model, to reduce overfitting. 

So far we have maximized the data likelihood:

We can reduce model «freedom» by using a Bayesian approach:

Small weights observed to improve generalization of neural networks: 

Make  assumption
on parameters

(a-priori) distribution

𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃(𝐷|𝑤)

𝑤𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 ⋅ 𝑃(𝑤)

Maximum 
A-Posteriori

Maximum 
Likelihood

𝑃 𝑤 ∼ 𝑁 0, 𝜎𝑤
2
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Weight Decay: Limiting Overfitting by Weights Regularization

ෝ𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤|𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 𝑃 𝑤

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤ෑ

𝑛=1

𝑁
1

2𝜋𝜎
𝑒
−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2 ෑ

𝑞=1

𝑄
1

2𝜋𝜎𝑤
𝑒
−
𝑤𝑞

2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ෍

𝑛=1

𝑁
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2

2𝜎2
+෍

𝑞=1

𝑄
𝑤𝑞

2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2
+ 𝛾෍

𝑞=1

𝑄

𝑤𝑞
2

Fitting Regularization

Here it comes 
another loss 
function!!!
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Recall Cross-validation and Hyperparameters Tuning 

You can use cross-validaton to select the proper 𝛾:

• Split data in training and validation sets

• Minimize for different values of 𝛾

• Evaluate the model

• Chose the 𝛾∗ with the best validation error

• Put back all data together and minimize

𝐸(𝑥|𝑤)

𝛾0.1

𝐸0.1
𝑉𝐴𝐿

1

𝐸1
𝑉𝐴𝐿

... 5

𝐸5
𝑉𝐴𝐿

100...

Chose 𝛾∗ = 5 with 
best validation error

𝐸𝛾
𝑇𝑅𝐴𝐼𝑁 = ෍

𝑛=1

𝑁𝑇𝑅𝐴𝐼𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2
+ 𝛾෍

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾∗ = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2
+ 𝛾∗෍

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾
𝑉𝐴𝐿 = ෍

𝑛=1

𝑁𝑉𝐴𝐿

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent 

feature preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

 probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

x

I

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)
, …𝑚

𝐽(𝑙)
(𝑙)
]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀𝑚 𝑙 )



18

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent 
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent 
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force to learn an independent 

feature preventing hidden units to rely on other units (co-adaptation):
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Dropout: Limiting Overfitting by Stochastic Regularization

Dropout trains weaker classifiers, on different mini- batches and then at 

test time we implicitly average the responses of all ensemble members.

x
1

x

I

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 Behaves as an 
ensemble method



22

Dropout: Limiting Overfitting by Stochastic Regularization

Dropout trains weaker classifiers, on different mini- batches and then at 

test time we implicitly average the responses of all ensemble members.

At testing time we remove masks and average output (by weight scaling)

x
1

x

I

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 Behaves as an 
ensemble method
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Saturation

Zero Gradient

Better Activation Functions

𝜕𝐸(𝑤𝑗𝑖
(1)
))

𝜕𝑤𝑗𝑖
(1)

= −2෍

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′ ෍

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

Gradient is anyway 

lower than 1

Activation functions such as Sigmoid or Tanh saturate

• Gradient is close to 0 or anyway less than 1

• Backprop. requires gradient multiplications

• Gradient faraway from the output vanishes

• Learning in deep networks does not happen

This is a well-known problem in Recurrent Neural Networks, but it affects 

also deep networks, and it has always hindered neural network training ...
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Classic Activation Functions and their Derivatives

Linear activation function

𝑔 𝑎 = 𝑎

𝑔′ 𝑎 = 1

Sigmoid activation function

𝑔 𝑎 =
1

1 + exp(−𝑎)

𝑔′ 𝑎 = 𝑔(𝑎)(1 − 𝑔 𝑎 )

Tanh activation function

𝑔 𝑎 =
exp 𝑎 − exp(−𝑎)

exp(𝑎) + exp(−𝑎)

𝑔′ 𝑎 = 1 − 𝑔 𝑎 2
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The ReLU activation function has been introduced

It has several advantages:

• Faster SGD Convergence (6x w.r.t sigmoid/tanh)

• Sparse activation (only part of hidden units are activated)

• Efficient gradient propagation (no vanishing or exploding gradient problems), 

and Efficient computation (just thresholding at zero)

• Scale-invariant:

Rectified Linear Unit

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

max 0, 𝑎𝑥 = 𝑎max 0, 𝑥
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The ReLU activation function has been introduced

It has potential disadvantages:

• Non-differentiable at zero: however it is differentiable anywhere else

• Non-zero centered output

• Unbounded: Could potentially blow up

• Dying Neurons: ReLU neurons can sometimes be pushed into states in which 

they become inactive for essentially all inputs. No gradients flow backward 

through the neuron, and so the neuron becomes stuck and "dies".

Rectified Linear Unit

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

Decreased model 
capacity, it happens with 

high learning rates
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Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

ELU: try to make the mean activations closer to zero

which speeds up learning. Alpha is tuned by hand
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Weights Initialization

The final result of gradient descent is affected by weight initialization:

• Zeros: it does not work! All gradient would be zero, no learning will happen

• Big Numbers: bad idea, if unlucky might take very long to converge

• 𝑤 ∼ 𝑁 0, 𝜎2 = 0.01 : good for small networks, but it might be a problem for 

deeper neural networks

In deep networks:

• If weights start too small, then gradient shrinks as it passes through each layer

• If the weights in a network start too large, then gradient grows as it passes 

through each layer until it’s too massive to be useful

Some proposal to solve this Xavier initialization or He initialization …



30

Xavier Initialization

Suppose we have an input 𝑥 with 𝐼 components and a linear neuron with 

random weights 𝑤. Its output is

We can derive that 𝑤𝑗𝑖𝑥𝑖 is going to have variance

Now if our inputs and weights both have mean 0, that simplifies to

If we assume all 𝑤𝑖 and 𝑥𝑖 are i.i.d. we obtain

Variance of output is the variance of the input but scaled by I ∗ 𝑉𝑎𝑟(𝑤𝑖).

ℎ𝑗 = 𝑤𝑗1𝑥1 +⋯+𝑤𝑗𝑖𝑥𝐼 +⋯+𝑤𝑗𝐼 𝑥𝐼

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝐸 𝑥𝑖
2𝑉𝑎𝑟(𝑤𝑗𝑖) + 𝐸 𝑤𝑗𝑖

2
𝑉𝑎𝑟(𝑥𝑖) + 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟 ℎ𝑗 = 𝑉𝑎𝑟 𝑤𝑗1𝑥1 +⋯+𝑤𝑗𝑖𝑥𝐼 +⋯+𝑤𝑗𝐼 𝑥𝐼 = 𝐼 ∗ 𝑉𝑎𝑟 𝑤𝑖 𝑉𝑎𝑟 𝑥𝑖
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Xavier Initialization

If we want the variance of the input and the output to be the same

For this reason Xavier proposes to initialize 𝑤 ∼ 𝑁 0,
1

𝑛𝑖𝑛

Performing similar reasoning for the gradient Glorot & Bengio found

To accommodate for this and Xavier propose 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 

More recently He proposed, for rectified linear units, 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛
 

𝐼 ∗ 𝑉𝑎𝑟 𝑤𝑗 = 1

𝑛𝑜𝑢𝑡𝑉𝑎𝑟 𝑤𝑗 = 1

Linear assumption 
seem too much, but 
in practice it works!
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Batch Normalization

Networks converge faster if inputs have been whitened (zero mean, unit 

variances) and are uncorrelated to account for covariate shift. 
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Batch Normalization

Networks converge faster if inputs have been whitened (zero mean, unit 

variances) and are uncorrelated to account for covariate shift. 

We can have internal covariate shift; normalization

could be useful also at the level of hidden layers.

Batch normalization is a technique to cope with this:

• Forces activations to take values on a unit Gaussian

at the beginning of the training

• Adds a BatchNorm layer after fully connected layers 

(or convolutional layers), and before nonlinearities.

• Can be interpreted as doing preprocessing at every layer of the network,

but integrated into the network itself in a differentiable way.

Fully Connected

Batch Norm

ReLU
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Batch Normalization

In practice 

• Each unit’s pre-activation is normalized

(mean subtraction, stddev division)

• During training, mean and stddev are 

computed for each minibatch

• Backpropagation takes into account

normalization

• At test time, the global mean / stddev 

are used (global statistics are estimated 

using training running averages)
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Batch Normalization

Apply a linear transformation, 

to squash the range, so that the 

network can decide (learn) how 

much normalization needs.

Can also learn 

to recover the 

Identity mapping

Simple Linear operation!

So it can be back-propagated
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Batch Normalization

Has shown to 

• Improve gradient flow through

the network

• Allow using higher learning rates

(faster learning)

• Reduce the strong dependence

on weights initialization

• Act as a form of regularization slightly 

reducing the need for dropout
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𝑤

𝐸(𝑤)

Recall about Backpropagation

Finding weighs of a Neural Network is a non linear minimization process

We iterate from a initial configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤)
2

𝑤0 𝑤1𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

Several variations 
exists beside these two 

…
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More about Gradient Descent

Nesterov Accelerated gradient: make a jump as momentum, then adjust

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ቤ
𝜕𝐸 𝑤

𝜕𝑤
𝑤
𝑘+

1
2

𝑤𝑘+
1
2 = 𝑤𝑘 − 𝛼 ቤ

𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1
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Adaptive Learning Rates

Neurons in each layer learn differently
• Gradient magnitudes vary across layers

• Early layers get “vanishing gradients”

• Should ideally use separate adaptive learning rates

Several algorithm proposed:
• Resilient Propagation (Rprop – Riedmiller and Braun 1993)

• Adaptive Gradient (AdaGrad – Duchi et al. 2010)

• RMSprop (SGD + Rprop – Teileman and Hinton 2012)

• AdaDelta (Zeiler et at. 2012)

• Adam (Kingma and Ba, 2012)

• …
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