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Abstract—Stochastic relaxation aims at finding the minimum
of a fitness function by identifying a proper sequence of distri-
butions, in a given model, that minimize the expected value of
the fitness function. Different algorithms fit this framework, and
they differ according to the policy they implement to identify
the next distribution in the model. In this paper we present
two algorithms, in the stochastic relaxation framework, for
the optimization of real-valued functions defined over binary
variables: Stochastic Gradient Descent (SGD) and Stochastic
Natural Gradient Descent (SNDG). These algorithms use a
stochastic model to sample from as it happens for Estimation
of Distribution Algorithms (EDAs), but the estimation of the
model from the population is substituted by the direct update
of model parameter through stochastic gradient descent. The
two algorithms, SGD and SNDG, both use statistical models
in the exponential family, but they differ in the use of the
natural gradient, first proposed in the literature by Amari [1],
in the context of Information Geometry. Due to the properties
of the exponential family, both gradient and natural gradient
can be evaluated in terms of covariances between the fitness
function and the sufficient statistics of the exponential family.
As the computation of the exact gradient is unfeasible, we
approximate the gradient by evaluating empirical covariances.
We test the performance of our algorithm over different standard
benchmarks, and we compare the results with other well-known
meta-heuristics in the framework of EDAs.

I. INTRODUCTION

The approach to optimization based on stochastic relaxation

is based on the idea of finding the minimum of a function

by identifying a sequence of densities in a statistical model

that converge in probability to the delta distribution over the

minima of the function itself. Such approach includes a broad

family of algorithms and meta-heuristics that make use of

probability distributions to sample candidate solutions to the

optimization problem.

For instance, in the Evolutionary Computation literature,

Estimation of Distribution Algorithms (EDAs) [2] perfectly

match this framework. EDAs are a family of algorithms for

black-box optimization, often presented in the literature as an

evolution of Genetic Algorithms (GAs), where the variational

operators of crossover and mutation are replaced by statistical

operators. Given a statistical model, either fixed a priori

or learned at runtime, at each iteration an EDA evolves a

population of feasible solutions to an optimization problem

by performing selection with respect to the fitness of the

individuals in the population (the sample), estimating the

parameters of a distribution given the selected individuals

(the observations), and sampling new candidate solutions (the

offsprings).

Each run of the algorithm describes a random sequence

of densities that converges towards distributions with reduced

support. At each iteration of the algorithm the empirical mean

of the fitness function with respect to the population decreases

in probability, until convergence. For this reason it becomes

of interest to evaluate the gradient of the expected value of

the function to be minimized with respect to the parameters

that identify a probability mass function in the model, and in

particular to study how the gradient field changes according

to the function and the statistical model used in the relaxation.

The idea of finding the minimum of a function by em-

ploying a statistical model is well known in the combinatorial

optimization literature. Among others we mention the use of

the Gibbs distribution in optimization by Simulated Anneal-

ing [3] and the use of Markov Random Fields in Boltzmann

Machines [4]. In [5], the authors describe some of these meta-

heuristics as model-based search, to emphasize the use of

probabilistic models able to capture the interactions among

the variables that appear in the fitness function.

In this paper we focus on the optimization of real-valued

functions defined over binary variables, and we choose models

that belong to the exponential family, such as Markov Net-

works (MNs), also known as Markov Random Fields (MRFs).

We present two algorithms in this framework, based on the

idea of directly updating the parameters of the statistical

model in the direction of the gradient of the expected value

of the fitness function. The first one is Stochastic Gradi-

ent Descent (SGD), and the second one Stochastic Natural

Gradient Descent (SNGD). They both implement the idea

of replacing the exact computation of the gradient with a

stochastic version, but they differ on the use of the natural

gradient [1]. The natural gradient, described by Amari in

Information Geometry [6], is the gradient evaluated with

respect to the Fisher Information Matrix, it is known to be

invariant with respect to the parametrization of the statistical

model, and has better convergence properties than regular

gradient. Due to the properties of the exponential family, both

gradients can be evaluated in terms of empirical covariances,



between the fitness function itself and the sufficient statistics

of the exponential family. The use of the natural gradient

in Evolutionary Computation (EC) appeared recently in [7]

in the context of continuous optimization, where the authors

developed an approach based on the estimation of the natural

gradient for multivariate Gaussian distributions.

The name stochastic relaxation comes from the highly cited

paper [8], where the authors describe an algorithm for image

restoration based on the Gibbs distribution and an annealing

scheme. The Gibbs distribution belongs to the exponential

family and appears to be a common statistical model in com-

binatorial optimization. More recently, it has been explicitly

analyzed in the context of EDAs, see for example [9], [10],

where the authors discuss BEDA, an algorithm with nice

theoretical properties, able to converge to the global minima

of the fitness function, but that unfortunately cannot be used

in practice due to its computational complexity. We start with

the discussion of this example.

Let f(x) ≥ 0 be a non-constant function defined over a

finite set X , such that f(x) = 0 for some values in the domain.

In order to find the minimum of f , we introduce the statistical

model

p(x;β) =
e−βf(x)

Z(β)
, β > 0, with Z(β) =

∑

x∈X

e−βf(x).

(1)

In the statistical physics literature Equation (1) is know as a

Gibbs (or Boltzmann) distribution, f(x) is usually called an

energy function, the parameter β the inverse temperature, and

Z(β) the partition function. The Gibbs model is not closed

in the topological sense, indeed it does not include the limit

distributions for β that tends to 0 and to +∞, see for example

[11]. As β → 0, p(x;β) tends to the uniform distribution over

X , since limβ→0 e
−βf(x) = 1. On the other side as β → +∞

we have that limβ→+∞ e−βf(x) = 1 if f(x) = 0, and 0
otherwise, that is, the Gibbs distribution converges to the uni-

form distribution defined over the reduced support with zero

(minimal) energy. Moreover we have ∇Eβ [f ] = −Varβ [f ],
i.e., the gradient of the expected value of the energy function

with respect to the β parameter is always negative, so that the

expected value decreases monotonically to its minimum value

as β → +∞.

The assumption on the nonnegativity of the energy func-

tion can be easily removed, and the Gibbs distribution is

in principle a good candidate model for the stochastic re-

laxation, since it admits as limit a global optimum for the

original optimization problem. However, the use of the Gibbs

distribution poses some practical problems, since it requires

an explicit formula for the fitness function, which may not

be available in black-box contexts, and an efficient way to

compute the partition function, which involves a sum over the

entire sample space. To overcome these limitations, different

approaches have been proposed in the literature, for example

one possibility is to choose larger models such that the joint

probability distribution could be factorized in a convenient and

computationally tractable way, see for instance the algorithm

Factorized Distribution Algorithm (FDA) proposed in [12].

The paper is organized as follows. In Section II we introduce

the notation used in the remaining part of the paper, we

formally describe the approach to optimization based on

stochastic relaxation, and we review some properties of the

exponential family. In particular we show that first and second

derivatives of the normalizing factor and of the expected

value of the fitness function can be expressed in terms of

covariances. Next, in Section III we present in details the

SGN and SNGD algorithms, while in Section IV we evaluate

the performance of the algorithms over a set of well-known

benchmarks, and we compare them with other well known

algorithms in the EDAs literature. Finally, we conclude in

Section V.

II. A GEOMETRIC FRAMEWORK FOR BINARY

OPTIMIZATION

In this section we introduce the notation that will be used in

the remaining part of the paper, together with the formalization

of stochastic relaxation, in the context of optimization, on

which the proposed algorithms are based. We concentrate on

the optimization of functions defined over binary variables,

even if the generalization to the case of a finite set is straight-

forward. Such a class of functions is known in mathematical

programming literature as pseudo-Boolean functions [13] to

underline that they take values over the real numbers, rather

then in 0/1.

Pseudo-Boolean functions appear in many different fields

and they are well studied in integer programming and in

combinatorial optimization. The optimization of this class

of functions is of particular interest, since it is NP-hard in

the general formulation [14], and no exact polynomial-time

algorithm is available in the literature. Often, pseudo-Boolean

function optimization is referred also as binary optimization

or 0/1 programming.

A. Notation and Definitions

In the following we introduce, for later convenience, an

harmonic encoding based on the discrete Fourier transform

instead of the standard 0/1 encoding for binary variables, i.e.,

we map y = {0, 1} to x = (−1)y , so that −10 = +1, and

−11 = −1. We introduce the set of indices L = {0, 1}n, and

we denote with Ω = {+1,−1}n the search space, such that an

individual (a point) x = (x1, . . . , xn) ∈ Ω is a vector of binary

variables. To provide a more compact notation we introduce a

multi-index notation, i.e., let α = (α1, . . . , αn) ∈ L be a vec-

tor of binary values, we define ‖α‖ = α1+ . . .+αn, ‖α‖∞ =
max{α1, . . . , αk}, α! =

∏n
i=1 αi!, and xα =

∏n
i=1 x

αi

i .

Any pseudo-Boolean function f : Ω → R has a unique

representation given by the square-free polynomial

f(x) =
∑

α∈L

cαx
α. (2)

Any pseudo-Boolean function thus can be uniquely determined

by a set I ⊂ L of exponents of the monomials, and the corre-

sponding vector c of real coefficients different from zero. Each



index α in L represents an α-monomial interaction among the

variables of order equal to the degree of xα, i.e., ‖α‖. By

Equation (2) we have that pseudo-Boolean functions belong

to the broader class of Additively Decomposable Functions

(ADF) [15], i.e., they can be expressed as the sum of more

elementary functions given by the monomial interactions.

To introduce the notion of stochastic relaxation, we need

to define probability distributions over the elements of the

sample space Ω. Let Xi : Ω → {+1,−1} represent the i-th
component xi of x. From a probabilistic point of view, each

Xi is a random variable and X = (X1, . . . , Xn) a random

vector defined over the observation space Ω. A probability

distribution is a probability measure P over Ω and, since it

is discrete, it corresponds to the probability mass function of

X , p(x) = P(X = x), that describes the probability mass for

each x. We denote with S the set of all possible probability

distributions for X , i.e., all p(x) : Ω → [0, 1], such that

p(x) ≥ 0 for all x ∈ Ω and
∑

x∈Ω p(x) = 1. A statistical

model M ⊂ S for X is a set of probability distributions,

i.e., M = {p(x)}. In case we deal with parametric statistical

models, we write M = {p(x; ξ)} = {pξ}, with ξ ∈ Ξ, to

underline the dependence of p on the parameter vector ξ.1

Since we are interested in the limits of sequences of

distributions in a model M, we denote with M its topological

closure, i.e., the set of densities that are limit densities of

sequences in M with respect to the weak topology, where, if

{pn}n>1 and p are densities in M, limn→∞ pn = p means

limn→∞ pn(x) = p(x) for all x ∈ Ω.

A natural parameterization for S is the vector of raw

parameters or raw probabilities ρ = (p(x))x∈Ω, under which

S coincides with the probability simplex ∆. Let S> be the

set of strictly positive distributions, i.e., all p ∈ S such that

p(x) > 0 for all x ∈ Ω. We define with Supp p the support of

a probability mass function p, i.e., the set of points in Ω with

probability greater than zero. Densities in S\S> have reduced

support and lay on the faces of the probability simplex. In

particular we denote with δ(x) the degenerate distribution

where the support has cardinality 1 and coincides with x.

B. Stochastic Relaxation

The combinatorial problem of finding the minimum of a

non-constant pseudo-Boolean function f can be formalized as

the unconstrained binary optimization problem

(P) min
x∈Ω

f(x).

Let Ω∗ ⊂ Ω be the set of solutions of (P), with Ω∗ ∋ x∗ =
argmin
x∈Ω

f(x). We introduce the stochastic relaxation (R) of the

original problem (P), by considering the functional Ep[f ] :
S≥ → [min f,max f ] and minimizing it over the set of all

densities over Ω, i.e.,

(R) min
p∈S

Ep[f ].

1For mathematical convenience, in the following we make some common
regularity assumptions on M, in particular we require that densities in the
model change smoothly with the parameter vector ξ.

Let S∗ ∋ p∗ be a solution of (R), i.e., a probability mass func-

tion in the probability simplex. Once a proper parameterization

ξ that uniquely identifies densities in S is introduced, the

relaxed optimization problem can be formulated as min
ξ∈Ξ

Eξ[f ].

The parameter vector ξ is the new vector of variables in (R),

and since we restrict to continuous parameterizations, which

is the case for a large class of models in statistics, both

Ep[f ] and (R) are continuous. Let Ξ∗ be the set of solutions

ξ∗ = argmin
ξ∈Ξ

Eξ[f ] of (R), i.e., the set of parameters that

identify distributions in Ω∗.

The optimization problem (P) and the stochastic relaxation

(R) admit the same minimum, that is

min
x∈Ω

f(x) = min
p∈S

Ep[f ],

and have equivalent solutions, i.e., a solution to either one

determines a solution to both. Densities that are solution to

(R) have reduced support included in Ω∗, i.e., S∗ ⊂ S \ S>,

S∗ can be obtained as the set of densities with support included

in Ω∗, while solutions sampled from densities in S∗ are in Ω∗.

The problems (P) and (R) have the same complexity which

is exponential in n, indeed, even if under some parameter-

izations, such as the raw parameters, the relaxed function

becomes linear in the new variables, on the other side in these

cases the number of linear inequalities required to define the

domain of the parameters is exponential in n. We are interested

in constraining the densities used in the relaxation to a lower

dimensional model which corresponds to a subset M ⊂ S
and study when (P) and the new optimization problem are

equivalent.

The stochastic relaxation of (P) with respect to the statistical

model M is defined as

(M) inf
p∈M

Ep[f ].

We take the infimum instead on the minimum, since in general

M is not closed in the topological sense, and the minimum

may not be attained. This is for example the case of the

Gibbs distribution, discussed in Section I and in the conceptual

algorithm BEDA, where the minimum is reached by the limit

probability mass function when β → ∞. Since for every

M ∋ p, Ep[f ] is lower-bounded by min f , and M is closed

in S, a solution p∗ = argmin
p∈M

Ep[f ] to (M) always exists. The

problem of interest is under which conditions the minimum of

(M) is equal to the minimum of (R), or equivalently of (P).

The stochastic relaxation is a continuous optimization prob-

lem defined over the vector of parameters of a statistical

model, which becomes the new variables of (R). The first

example we introduced was based on the Gibbs distribution,

that belongs to the exponential family. We now introduce a

second example of a statistical model which plays an important

role in optimization and in particular in the EDAs literature.

The independence model appears frequently in optimization

in the context of stochastic relaxation. This is the case for all

univariate EDAs, such as PBIL [?], UMDA [?], and cGA [?].

These algorithms were the first to be proposed in the EDA



literature. One of the reasons is that estimation and sampling

the independence model are computationally efficient, since

they are linear operators in the number of variables.

Let S1 be the independence model for X , that is, the

set of densities that factorize as the product of the marginal

probabilities, i.e,

p(x) =
n∏

i=1

pi(xi), (3)

where pi(xi) = P(Xi = xi). A common parameterization

for S1 is based on first order moments ηα = E[Xα], with

‖α‖ = 1 (where on the left-hand side α appears as index for

η), so that a probability mass function is uniquely identified

by a vector η of n parameters called expectation parameters.

The parameters are independent with respect to each other,

and under the harmonic encoding their domain is [−1, 1].

Under the expectation parameters, the independence model

can be represented as an n-dimensional hypercube, where each

of the 2n vertices is one of the degenerate distributions δ(x).
As a consequence the minimum of a stochastic relaxation

based on S1 coincides with the minimum of (P). Moreover,

since η is an n-dimensional vector, we can employ the multi-

index notation, and write the expected value of f with respect

to a probability mass function p in S1 as a pseudo-Boolean

function itself, i.e.,

Eη[f ] =
∑

α∈I

cαη
α.

The expected value of f under the η parameterization is a poly-

nomial function defined over S1, i.e., in the η parameterization

the n-dimensional hypercube [−1,+1]n. The optimization of

such class of functions is not trivial, and in the worst case it

may admit an exponential number of local minima.

It is possible to study the landscape of Eη[f ] for example

by determining its critical points in the model. Similarly we

can look for such points on the models associated to the

faces of the hypercube, where the value of some moments

has been fixed. Such analysis can be employed to determine

the existence of local minima. The presence of more basins

of attractions ma affect the probability to converge to global

optimal solutions of (M) for a local search method based on

gradient descent. For instance, in case f is quadratic, they can

be determined by solving a linear system, where all partial

derivatives are set to zero. Such system may admit no solution,

only a solution or an infinity number of solutions.

This is strongly related to the fact that univariate EDAs are

not well suited in general for the optimization of functions

with higher-order interactions among variables, since they may

get stuck in local minima. For this reason other algorithms

that employ statistical models able to take into account such

interactions have been proposed in the literature. In particular

in this paper we are interested in models that come from the

exponential family.

C. Exponential Family

In the remaining part of the paper we study stochastic

relaxation based on the exponential family of distributions.

We introduce the k-dimensional exponential family E

p(x; θ) = exp

(
k∑

i=1

θiTi(x) − ψ(θ)

)
, θ ∈ R

k, (4)

where the functions T1(x), . . . , Tk(x) are the canonical or suf-

ficient statistics, and ψ(θ) is the cumulant generating function.

The parameters in θ are usually called natural or canonical

parameters of the exponential family. Due to the exponential

function, probabilities in the exponential family never vanish,

so that only distributions with full support can be represented

using this parameterization.

Given an exponential family E , since the sample space is Ω,

the sum of the sufficient statistics is a pseudo-Boolean function

itself, and we have the following (exact) expansion of the log

probabilities

log p(x; θ) =
∑

α∈L∗

θαx
α − ψ(θ), (5)

where L∗ = L \ {0}. Statistical models of this form belong

to the exponential family, they are known as (saturated)

log-linear models, and are well studied in categorical data

analysis for the analysis of contingency tables [16]. From

Equation (5) it follows that, without loss of generality, we

can consider exponential models where the sufficient statistics

are α-monomials, i.e.,

p(x; θ) = exp

(∑

α∈M

θαx
α − ψ(θ)

)
, θα ∈ R, (6)

with M ⊂ L∗ and #(M) = k. This allows to include

in the model any order of interaction among the variables,

by considering the proper monomial Xα among the set of

sufficient statistics of the exponential family.

The choice of such family is not too restrictive, since many

models in statistics belong to the exponential family. Another

advantage is the possibility to include in the model specific

interactions among the variables, according to the choice of

the sufficient statistics Ti. On the other hand, a limit is given

by the fact that the exponential family includes only strictly

positive distributions, differently from many models used in

EDAs, for instance the independence model itself. In practice,

this is not an issue, we sample finite populations and any limit

distribution can be approximated with the desired precision

with a sequence of distributions that converge in probability

to the boundary of the model. On the other side, from a

theoretical point of view it becomes important to characterize

the topological closure of an exponential family, and which

distributions with reduced support may be obtained as limit

of sequences of densities in the statistical model. Indeed if

the model contains all degenerate distributions, the stochastic

relaxation (M) and the original problem (P) have the same

global minimum and thus equivalent solutions.



D. Properties of the Exponential Family

In the following we review some properties of the ex-

ponential family E , according to the information geometry

theory [6]. Proofs of statements and results mentioned in

this subsection can be found in [17]. We refer to [18] as a

monograph on exponential families.

We study the gradient field associated to the expected value

of a function defined over the sample space, in case it is finite.

This analysis is important in order to study local minima of

the stochastic relaxation based on the exponential family to

which a gradient descent policy may converge, as discussed

in the next section.

In the choice of the model for an EDA or a gradient descent

algorithm, and more in general for any algorithm that fits the

stochastic relaxation framework, you want to ensure that all

degenerate distributions δ(x), with x ∈ X , can be obtained as

the limit of a sequence of distributions in E . For this reason

we need to consider the topological closure of the exponential

family, which is defined as the union of the exponential

families defined over the reduced supports associated to the

faces of the marginal polytope, i.e., the convex hull of T (Ω).
For more details, refer to [19] and more recently [20], cf. [21].

Morever, it is known that, any model with all linear terms Xi

as sufficient statistics, like the independence model, contains

in its closure all δ(x) distributions, so that (P) and (M) are

equivalent. Notice that this is a sufficient condition, but not

necessary.

The sequences of distributions in the exponential family that

represent each run of an EDA or a gradient descent algorithm

are likely to converge in probability to densities with reduced

support, since the empirical value of the population decreases

in probability at each iteration. Moreover, it has been proved

that any critical point in E is a saddle point. Then it follows

that at least one of the natural parameters of the sequence will

diverge to either +∞ or −∞. In case all θ parameters diverge,

the algorithm converges to a vertex of the model, i.e., a δx
distribution, that all individuals in the population are equal.

Sequences described in the previous theorem can be con-

structed in different ways. For instance, from a theoretical

point of view, they could be obtained from any Gibbs dis-

tribution where the energy function admits x∗ as minimum.

More in general EDAs try to generate sequences of this form,

where the empirical mean of f with respect to the population

decreases in probability from one iteration to the next, by iter-

atively selecting best individuals, learning a statistical model,

estimating its parameters, and then sampling a new population.

In this paper we describe two gradient descent techniques,

that generate such sequences explicitly by estimating the

(natural) gradient of f . From this point of view, there following

results are relevant in our analysis. In case f can be expressed

as a linear combination of the sufficient statistics of E , or in

other words, the model takes into account all the interactions

present in the fitness function, then ∇Eθ[f ] never vanishes.

Moreover, Eη[f ] is a linear function in the η parameters, and

in the θ parameters, from any distribution q in E there exists

a 1-dimensional exponential family included in E

p(x; θ) =
qeθf

Eq[eθf ]
, θ ∈ R (7)

that represents the shortest path from q to the uniform distribu-

tion over the minima of f . The previous result generalizes the

example of the Gibbs distribution we discussed in Section I. In

particular, from Equation (7) the Gibbs distribution is obtained

for θ < 0, when q is the uniform distribution over the X .

These observations, and in particular the statement that any

critical point for the expected value of f is a saddle point,

implies that a gradient descent heuristic will converge towards

the boundary of the model, or in other words, that one of

more of the θ parameters will diverge. In particular, if the

model encodes all the interactions of f , a local search method

based on gradient descent can converge to the global optimum,

independently on the starting point, since there is a unique

basin of attraction. Of course the evaluation of the exact

gradient is not computationally admissible when n is large,

thus in the next section we propose a meta-heuristic based on

stochastic gradient descent.

III. OPTIMIZATION BY GRADIENT DESCENT

It follows from the properties of the exponential family that

directional derivatives of the expected value of f in the θ
parameterization can be evaluated in terms of covariances, i.e.,

∂iEθ[f ] = Covθ(f, Ti).

Moreover, directional derivatives along a direction v that

belongs to the tangent space of E in θ can be expressed as

Dv Eθ[f ] = Covθ(f, v).

The direction v of maximum decrement of Eθ[f ] is the unit

vector v that maximizes the directional derivative of Eθ[f ]. If

f can be expressed as a linear combination of the Xα in E ,

the directional derivative is maximal when v ∝ f , otherwise,

it is maximal in the direction v given by the projection f̂θ of

f onto the tangent space at θ, i.e.,

f̂ = ∇Eθ[f ]I(θ)
−1, (8)

where ∇Eθ[f ] = (Covθ(f, Ti))
k
i=1 is the vector whose

components are the partial derivatives ∂iEθ[f ], and I(θ) =
[Covθ(Ti, Tj)]

k
i,j=1 is the covariance matrix. The covariance

matrix I(θ) is the Fisher information matrix and, from Equa-

tion (8), follows that the projection f̂θ of f over Tθ corre-

sponds to the natural gradient ∇̃Eθ[f ], i.e., the gradient of

Eθ[f ] evaluated with respect to the Fisher information metric,

cf. [1].

By leveraging on these results, we propose an algorithm

that updates explicitly the model parameters in the direction

of the natural gradient of the expected value of f . This

approach fits the framework of the stochastic relaxation, and

the algorithm can be described as a sequence of points in a

statistical model that converges towards the boundary of the

model. Differently from most of the EDAs described in the

literature, the parameters are not estimated from a selected



population, rather what is estimated from the samples is the

direction and the size the natural gradient.

From the analysis carried out in the previous section, the

gradient of Eθ[f ] in the exponential family can be evaluated

in terms of covariances, but since this evaluation requires a

summation over the entire search space Ω, we replace the

exact covariances with empirical covariances and estimate

them from the current population. The basic iteration of an

algorithm that belongs to the Stochastic Natural Gradient

Descent (SNGD) meta-heuristic can be summarized in the

following steps.

Algorithm 1: SGD AND SNGD

1) Let E be an exponential model and P0 the initial

population, set t = 0 and θt = 0

2) Evaluate the empirical covariances Ĉov(f, Ti) and

Ĉov(Ti, Tj) from Pt, and let ∇Ê[f ] = Ĉov(f, T )

3) [SNGD only] ∇Ê[f ] = ∇Ê[f ] Ĉov(Ti, Tj)
−1

4) Update the parameters θt+1 = θt − γ∇Ê[f ]

5) Sample the population Pt+1 from p(x; θt+1) ∈ E

6) Set t = t+ 1

7) If termination conditions are not satisfied, GOTO 2)

The samples in P0 are usually generated randomly, but in

case of prior knowledge about the function to be minimized, a

non-uniform population can be employed. The parameters of

the algorithm are the size of the population Pt, and the step

size γ, together with the number of iterations of the Gibbs

sampler and the value of the initial temperature T . Notice

that the evaluation of the natural gradient requires to solve

a liner system which is more computationally expensive than

just the evaluation of the gradient. Moreover the empirical

FIsher matrix may not be invertible, so that a solution is not

guaranteed to exist. This usually happens when the population

converges to an optimum (local or global), and the sequence

of densities gets close to the boundary of the model.

We included an implementation of both SGD and SNGD

in Evoptool, an extensible toolkit for the implementation and

evaluation of EC algorithms over a set of fixed benchmarks,

available for download on the AIRWiki webpage, see [22].

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results for

SGD and SGND over a set of benchmark of increasing

difficulty. The three main parameters of SNG and SNGD are

the population size m, the step size γ in the direction of the

estimated gradient, and the number of iterations of the Gibbs

sampler.

We generated populations of different sizes, up to 100 times

larger than n, and we set γ = 1, and the Gibbs sampler

temperature T = 1. The value of the γ parameter strongly

depends on the minimum and maximum value of the fitness

function, that for these preliminary tests has been normalized

between 0 and 100, in such a way that when the minimum of

the benchmark problem is found, f = 100, on the other side,

the maximum corresponds to f = 0. The choice of the value

of the parameters comes from experimental evaluations.

First we tested the performance of the algorithms over the

Alternated Bits function, which introduces bivariate interac-

tions among the variables of the problem. The benchmark is

defined as the sum of adjacent bits taking opposite value,

i.e., f(x) =
∑n−1

i=1 |xi − xi+1|. The interactions structure

of Alternated Bits can be modelled through a chain, either

directed or undirected. Results are showed in Figure 1., for

n = 64. The model for both SGD and SNGD has been chosen

in order to take into account all the interactions present in f .

Then we tested the algorithm to determine the ground states

of a set of instances of a 2D Ising spin glass model, where

the energy function is defined over a square lattice E of sites

by

f(x) = −

n∑

i=1

cixi −
∑

i<j∈E

cijxixj . (9)

The sufficient statistics of the exponential family E employed

in the relaxation have been determined according to the lattice

structure, in particular they have been chosen to match all

the monomials in the expansion of f in Equation (9). Figure

2 show the results of a set of experiments run over 10x10

instances randomly generated, where all algorithms employ

the same population size.

We compared the performance of our algorithms with Is-

DEUM [23], an implementation of DEUM specifically de-

signed to solve spin glass problems, and with other two

popular EDAs, PBIL [24] and sBOA [25]. PBIL is a uni-

variate EDA based on the independence model, while sBOA

employs Bayesian Networks, estimated at each iteration form

the selected population. We ran 30 instances of the algorithms,

for different sizes of the lattice.

Preliminary results show that, similarly to Is-DEUM, our

implementation of SNGD is able to find the global optimum

of both benchmarks, after few generations.

The most critical parameter of the SNGD algorithm is the

size of the population generated at each iteration by the Gibbs

sampler. Clearly, the larger the sample size, the more accurate

the predictions of the covariances are. Indeed, even if we

are in the hypothesis of good model, so that there are no

critical points in the model and there exists a unique basin of

attraction, in case of small populations the algorithm may get

trapped in local minima, since the closer to the boundary the

distribution is, the smaller the variance of the sample. Figure 1

(a) and 2 (a) show how the fitness of the best individual after

convergence of the algorithm changes, for different values of

the population size. In order to avoid premature convergence

to non optimal solutions, the population size must be chosen

according to both the problem size n and the number k of

parameters of the model.

V. CONCLUSIONS

In this paper we presented an approach to pseudo-Boolean

optimization based on the idea of the stochastic relaxation, and



 90

 92

 94

 96

 98

 100

 64  128  256  512  1024  2048  4096  8192

B
e
s
t 
fi
tn

e
s
s
 v

a
lu

e
 a

ft
e
r 

c
o
n
v
e
rg

e
n
c
e

Population size

SNGD
SGD

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  5  10  15  20  25  30  35  40

B
e
s
t 
fi
tn

e
s
s
 v

a
lu

e

Generations

PBIL
sBOA

Is-DEUM
SGD

SNGD

(b)

Fig. 1. Experimental results over 30 runs for AltBits, with 64 variables. Population size was set to 256 for all algorithms. SGD and SNGD: Gibbs sampler
iterations = 1, T = 1, step size = 1; PBIL: learning rate = 0.99; sBOA truncation selection = 50%, elitism = 25%, maximum number of incoming edges =
4; DEUM: Gibbs sampler cooling scheme T = 1/(cr), c=0.0005, r=# of bit sampled; SNGD: Gibbs sampler iterations = 1, T=1, step size = 1.
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Fig. 2. Experimental results over 30 runs for a set of 10x10 instances of a 2D Ising spin glass problems. Population size was set to 400 for all algorithms.
SGD and SNGD: Gibbs sampler iterations = 1, T = 1, step size = 1; PBIL: learning rate = 0.99; sBOA truncation selection = 50%, elitism = 25%, maximum
number of incoming edges = 4; Is-DEUM: Gibbs sampler cooling scheme T = 1/(cr), c=0.0005, r=# of bit sampled; SNGD: Gibbs sampler iterations = 1,
T=1, step size = 1.

stochastic gradient descent. We introduced a parameterization

based on the natural parameters of the exponential family

and we discussed some properties of this family of statistical

models. In particular we showed that the choice of a proper

model in the relaxation becomes crucial to avoid the presence

of critical points for the expected value of f . The analysis

carried out in the paper leads to the definition of a class

of algorithms based on stochastic (natural) gradient descent,

called SGD and SNGD, where the gradient is estimated

through the evaluation of empirical covariances. Preliminary

experimental results are encouraging and compare favorably

with other recent heuristics proposed in the literature. In partic-

ular experiments show that SNGD requires smaller population

sizes compared to SGD, for different problems, thus a smaller

number of fitness evaluations is involved. In turn, this implies

a higher computational cost for the evaluation of the natural

gradient, since it implies the solution of a linear system.

We identified two promising directions of research. First,

since we deal with a sample size that is much smaller than

the cardinality of the sample space, the estimation of the

covariances is affected by large noise. For this reason it seems

convenient to replace empirical covariance estimation with

other techniques which prove to be able to provide more

accurate estimation, such as shrinkage approach to large-scale

covariance matrix estimation [26]. Such a method offers robust

estimation techniques with computational complexity which is

often no more that twice that required for empirical covariance

estimation.

Second, similarly to many multivariate EDAs, when the

interactions of f are unknown, we can incorporate in the algo-

rithm some model building techniques able to learn from the

samples a set of statistically significant correlations between



the variables in f . Often in many real-world problems we

deal with sparse functions, i.e., each variable interacts with

a restricted number of other variables, under this hypothe-

sis, we propose to employ ℓ1-regularized methods for high-

dimensional model selection techniques [27].

The algorithm we propose, SNGD, is highly parallelizable,

both in the estimation of covariances and in the sampling step.

The final aim is to develop an efficient and effective approach

to adaptively solve very large pseudo-Boolean problems also

in the black-box context for which the interaction structure

among the variables is unknown.
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